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Abstract

We investigate the forecasting ability of the most commonly used benchmarks in 
financial economics. We approach the main methodological caveats of probabilistic 
forecasts studies –small samples, limited models and non-holistic validations– by 
performing a comprehensive comparison of 15 predictive schemes during a time 
period of over 21 years. All densities are evaluated in terms of their statistical con-
sistency, local accuracy and forecasting errors. Through the development of a new 
indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities 
outperform historical-based predictions in terms of information content. We find 
that the Variance Gamma model generates the highest out-of-sample likelihood of 
observed prices and the lowest predictive errors, whereas the ARCH-based GJR-
FHS delivers the most consistent forecasts across the entire density range. In 
contrast, lognormal densities, the Heston model or the non-parametric Breeden-
Litzenberger formula yield biased predictions and are rejected in statistical tests.

Keywords: Probabilistic forecasts, risk-neutral densities, ARCH models, ensemble 
predictions, model validation.

JEL Classification: C14, G12, G13, C52, C53.
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1 Introduction

Forecasting future asset prices is arguably one of the most relevant problems for 
risk managers, central bankers and investors. Historical and risk-neutral methods 
are the most widely used techniques in financial forecasting. Yet, when it comes to 
evaluate predictions across the entire density range, comprehensive comparisons 
are scarce and there is no consensus on which models perform better.

Historical methods generate future predictions based on past prices. These models 
are easy to implement and extensively used in risk management and stress testing. 
However, it is well-known that historical patterns do not repeat themselves, particu-
larly in times of economic turmoil. Furthermore, historical models may yield differ-
ent estimates depending on the length of the calibration window, introducing un-
certainty and possible cherry-picking concerns.

Risk-neutral estimates, on the other hand, contain forward-looking expectations and 
react immediately to changing market conditions, thus being better suited conceptu-
ally for forecasting purposes. However, risk-neutral models do not explicitly consider 
the investors’ risk preferences across different future states. Consequently, some 
agents rapidly dismiss risk-neutral models as the basis for financial predictions.

The previous literature on financial forecasts has been mainly devoted to volatility 
predictions. Poon and Granger (2003) compare the results from 18 academic papers 
showing that in 17 of them implied volatilities produce better forecasts than 
GARCH-based volatilities. Similarly, an extensive survey by Christoffersen, Jacobs, 
and Chang (2013) find that option-based volatilities beat historical forecasts in most 
empirical comparisons1. Conversely, Canina and Figlewski (1993) find that implied 
volatilities do not accurately predict the future, providing an exception to the main-
stream literature.

Much fewer studies consider entire density forecasts. While empirical analyses tend 
to find that risk-neutral densities (RNDs) outperform historical-based estimates2, 
generalizations to other markets or time-periods are typically limited by three meth-
odological reasons. First, data availability issues have led most researchers to work 
with relatively small option samples (e.g.: Anagnou et al., 2005 and Liu et al., 2007). 
Limited samples can significantly impact the evaluation of predictive densities, as 
the inability to reject a particular model can be due to the low statistical power of 
the testing procedures (Anagnou et al., 2003).

1 Some examples supporting the use of implied volatilities are: Busch, Christensen, and Nielsen (2011), 

Taylor, Yadav, and Zhang (2010); Giot and Laurent (2007), Jiang and Tian (2005) and Blair, Poon, and 

Taylor (2001), among others. 

2 See Christoffersen, Jacobs, and Chang (2013).
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Second, comparing density estimates from a wide range of schemes requires working 
with markedly different models and mathematical routines. As a result, most studies 
have contributed through vis-à-vis comparisons across particular model choices (e.g.: 
Silva and Kahl (1993), Melick and Thomas (1997) and Alonso, Blanco, and Rubio 
(2005)) or by surveying specific asset dynamics (Yun, 2014). However, empirical anal-
yses covering a comprehensive range of risk-neutral and historical densities are scarce.

Third, the validation of financial density forecasts is typically performed through 
the so-called probability integral transforms (PIT), which assess the statistical con-
sistency between the ex-ante densities and the ex-post realizations. However, several 
papers3 have shown that PIT-based analyses do not consider the forecasting accu-
racy of the competing methods or the magnitude of its errors, advocating for tar-
geted scoring rules to supplement the PIT assessments.

We approach these methodological caveats –small samples, limited models and 
non-holistic validations– by performing a comprehensive analysis of 15 forecasting 
schemes during a period of over 21 years. Historical densities are generated using a 
wide variety of methods, spanning from returns bootstrapping or standard GARCH 
dynamics to asymmetric time-series models with filtered historical simulation. Sim-
ilarly, we estimate RNDs using the most common benchmarks in financial econom-
ics, including lognormal densities, stochastic volatility, jump processes and non-
parametric distributions.

All density forecasts are evaluated through a 3-tiered criteria. First, we consider a 
multi-factor goodness-of-fit analysis, assessing each PIT sequence by means of the 
Berkowitz, Kolmogorov-Smirnov and Jarque-Bera distributional tests. Second, we 
employ the logarithmic scoring rule, which evaluates the accuracy of each method 
in predicting the ex-post realizations. Third, we are the first to apply, to our knowl-
edge, a return-based Continuous Ranked Probability Score (CRPS) to financial fore-
casts. The CRPS compares the realizations to the entire ex-ante densities, ranking all 
methods in terms of their prediction errors. Finally, we develop a new indicator, the 
Integrated Forecast Score (IFS), which aggregates all the statistical consistency, local 
accuracy and forecasting errors results into a single composite measure.

We calibrate our RNDs using market-derived option prices only. This approach con-
trasts with the use of exchange-reported settlement prices, which in many cases are 
theoretically estimated and already reflect specific modelling choices. Finally, we do 
not consider in this paper combinations of risk-neutral and historical methods; 
while this approach seems promising4, our aim is to shed light on the predictive 
ability of the most commonly used models in financial economics, thus leaving 
mixed densities for future research.

The rest of the paper is organized as follows. Section 2 presents the competing mod-
els. Sections 3 and 4 contain the dataset and the calibration procedures. Section 5 
explains the validation methods, followed by the empirical results in Section 6. Fi-
nally, Section 7 concludes.

3 See Bao, Lee, and Saltoğlu (2007), Amisano and Giacomini (2007) and Gneiting and Raftery (2007).

4 See Shackleton, Taylor, and Yu (2010), Høg and Tsiaras (2011), de Vincent-Humphreys and Noss (2012) 

and Ivanova and Puigvert Gutiérrez (2014).
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2 Forecasting methods

2.1 Historical densities

We employ five specifications for the historical densities. The first assumes that fu-
ture prices follow a geometric Brownian motion. The corresponding densities are 
then lognormal. Our second specification generates future price paths by a bootstrap-
ping of past returns, thus randomly drawing returns from the empirical distribution 
function. For each observation date t, the one-day-ahead return is then given by:

t t tr z z r{ }µ+ + += + ∼1 1 1, h (1)

where r r r{ } = 1( ,..., )h h h
t  denotes the set of historical returns and  is the daily average 

return. Next, we consider two standard GARCH(1,1) models. This choice is sup-
ported by Hansen and Lunde (2005) which compare 330 ARCH models, finding no 
evidence that a simple GARCH(1,1) underperforms more sophisticated dynamics, 
with the exception of asymmetric models including a leverage effect. Under a 
GARCH(1, 1) future returns are given by
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+ +

+ + + +

+
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We consider two specifications for the standardized residuals zt: (i) a Gaussian distribu-
tion (GARCH-N) and (ii) a leptokurtic Student’s t (GARCH-t). Finally, we evaluate the 
Filtered Historical Simulation (FHS) approach introduced in Barone-Adesi, Engle, and 
Mancini (2008), which combines an asymmetric GJR-GARCH model5 with empirical 
innovations. Specifically, future returns in the GJR-FHS(1,1) model are computed as
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where It = 1 when et < 0 and 0 otherwise, introducing a leverage effect. The innovations 
zt are drawn from the scaled empirical distribution function, which is obtained by di-
viding each estimated return innovation 

�
te  by the estimated conditional volatility σ�t

6, 
thus reflecting the skewness and kurtosis observed in the historical calibration period.

5 Glosten, Jagannathan, and Runkle (1993).

6 Consequently, the set of scaled non-parametric innovations (0,1)npf  is formed by a set of past returns 

t t tz e σ= �� /h . 
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Simulated price paths for the time-series models are generated by drawing from the 
assumed return distribution, calculating the conditional variance (where applicable), 
drawing another innovation, updating the conditional variance, and so on up to the 
forecasting horizon, denoted as t*. Consequently, future prices at the forecasting 
horizon *t

F  are given by:

 
ττµ σ + +=

= +∑* 1
exp( )t t i t it i

F F z
 

(4)

where Ft is the market-observed future price at date t, zt+i denotes the daily innova-
tions for each model, and  is the number of business days between t and t*.

2.2 Risk-neutral densities

Our simplest RND model is again a lognormal specification, but calibrated to cur-
rent option prices. However, it is well-known that the volatility of financial assets is 
time-variant and stochastic. Therefore, we next consider the Heston (1993) model, 
which employs a mean-reverting stochastic volatility process that can generate 
skewed and leptokurtic distributions. Specifically, risk-neutral Heston dynamics are 
given by

 = ,1t t t tdF V FdW  (5)

 η= − + ,2( )t t t tdV a V V dt V dW  (6)

where dWt,1 and dWt,2 are two correlated Wiener processes. The empirical literature 
suggests that a jump component can help explaining the observed equity returns, 
particularly in short term horizons7. Following Bates (1996), we complement the Hes-
ton volatility in (6) with a lognormal price jump, thus obtaining the dynamics:

 λµ= + −(1)
t t t t t t t J tdF V FdW J FdN Fdt (7)

where Nt is a Poisson process with intensity  and Jt are the jumps sizes, which are 
lognormally distributed with an average size J and standard deviation J. Leaving 
diffusion models, we also evaluate the purely discontinuous Variance Gamma (VG) 
model (Madan, Carr, and Chang, 1998), which combines frequent small moves with 
rare big jumps. The VG dynamics are:
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τ σ θ θ τ σ τ

+=

= − −

= +

( ; , , )
*

21
ln(1 )

2
( ; , , ) ( ; ) ( ; )

H v
t t

t

F Fe

v
v

v
H v G v G v W  

(8)

where G(t;) a Gamma distribution and the parameters ,  and  jointly control the 
volatility, asymmetry and kurtosis.

7 See Jones (2003), Bakshi, Cao, and Chen (1997), Cont and Tankov (2004), among others.
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RNDs for all stochastic models are obtained through characteristic functions. Heston 
(1993) and Bakshi and Madan (2000) show that the cumulative density function of *t

F  
can be directly obtained in terms of the characteristic function of *ln( )tF  as follows:

 

ψ
π

−
∞  

= +  
 

∫ *

ln( )
ln

* 0

( )1 1
( ) Re

2
t

iw x
F

t

e w
CDF x dw

iw
 

(9)

where Re[·] denotes the real operator8.

Finally, Breeden and Litzenberger (1978) show that given a continuous of non-arbi-
trable call prices, it is possible to obtain a unique risk-neutral distribution that repli-
cates such option prices. Specifically, we employ the implementation in Malz (2014), 
which introduces a simple arbitrage-free approach based on cubic spline interpola-
tions across the observed implied volatilities and a flat extrapolation at the end-
points. For each expiry t*, the interpolated volatility function is used to compute the 
continuous call pricing function C(x,t*), and these prices are then numerically dif-
ferentiated to obtain the CDF for all the strikes x as:

 

τ ∆ ∆ ≈ + − − + ∆  *

1
( ) 1 ( , *) ( , *)

2 2
r

tCDF x e C x t C x t
 

(10)

where ∆ denotes the step size used in the finite differentiation.

8 See Crisóstomo (2014, 2017) for further details.
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3 Data

3.1 Option prices

Our option dataset is comprised of European-style contracts with underlying the 
IBEX 35 futures. Option prices are observed during a period of over 21 years, from 
November 1995 to December 2016. To construct our dataset, we follow the recom-
mendations in Christoffersen, Jacobs, and Chang (2013), thus only employing liquid 
option contracts and minimizing the input modelling assumptions.

Our study focuses on strictly market-derived option prices. This choice deviates 
from the common practice of using exchange-reported settlement prices, which in 
some cases are theoretically estimated by the relevant exchange even if there is no 
real activity in the underlying contracts. For instance, prior to expiration, the settle-
ment prices of IBEX 35 options are computed by MEFF assuming a linear relation 
in the implied volatility function for OTM and ITM options9. Therefore, these settle-
ment prices reflect specific modelling choices and using them in the calibration 
would entail introducing an exogenously derived volatility shape into our models.

The option dataset is formed by front-month option contracts. This choice is justi-
fied by two reasons. First, near-to-expiry contracts exhibit the highest liquidity and 
thus availability of strictly market-derived prices. Second, the use of monthly cycles 
allows us to maximize the number of non-overlapping forecasts while minimizing 
the input modelling assumptions10. Observation dates are set 28 calendar days be-
fore each monthly expiry date. For such dates, we record the bid and ask prices of 
all the available call and put options. Since ITM options are less actively traded than 
OTM options, we build our dataset with OTM and ATM calls, whereas OTM put are 
converted into equivalent call prices using the Put-Call parity.

We only consider options exhibiting contemporaneous bid and ask quotes, while 
the consistency of each cross-section is ensured by removing contracts that do not 
respect non-arbitrage conditions11. After filtering, we obtain a dataset of 6659 op-
tion prices distributed across 254 monthly cycles. The average number of strikes in 

9 The linear slopes are different for ITM and OTM options and are calculated for each maturity. Prior to 

October 1996, settlement prices were computed using a constant implied volatility (Alonso, Blanco, and 

Rubio, 2005). MEFF is the official Spanish Futures and Options Exchange.

10 IBEX 35 options do not exhibit shorter than monthly expirations. Therefore, using shorter periods would 

lead to forecasting horizons that lack direct option quotes, requiring strong extrapolation assumptions. 

On the other hand, longer expiration cycles would entail both reducing the number of non-overlapping 

periods and relying on the less liquid back-month contracts.

11 Call and put-derived equivalent contracts whose market price is not a convex and decreasing function 

of the strike are removed from the dataset.
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the cross-sections is 26, ranging from a minimum of 8 to a maximum of 72. Table 1 
summarizes the main statistics of the option dataset.

Summary statistics for the IBEX 35 option dataset TABLE 1

Option type Total number Average per day Maximum per day Minimum per day

Calls 3,151 12 38 1

Puts 3508 14 46 3

Overall 6659 26 72 8

Moneyness F/K No. of options (%)

Deep OTM put >1.10 1755 26,36

OTM put 1.03-1.10 1423 21,37

Near the money 0.97-1-03 1496 22,47

OTM call 0.90-0.97 1541 23,14

Deep OTM call <0.90 444 6,67

A minimum of 8 options is required to calibrate the Bates model. Therefore, in seven observation dates we 

supplemented the cross-sections with at-the-money option contracts whose last traded price was consistent 

with the contemporaneous bid and ask prices. This resulted in an addition of 9 options (0.1% of the sample).

3.2 Futures prices

Daily front-month IBEX 35 futures prices are recorded from 19 November 1990 until 
23 December 201612. Contrary to options, the daily settlement prices of front-month 
IBEX 35 futures are computed as the volume weighted average of market-derived trans-
actions between 17:29 and 17:30. The minimum IBEX 35 future price is 1882, recorded 
on 6 October 1992, and the maximum is 15945.5, attained on 11 December 2007.

Separately, at each monthly expiration date, the final settlement price for each fu-
ture is determined by MEFF by averaging the spot IBEX 35 index prices from 16:15 
to 16:45, taking one observation per minute. These settlement prices constitute the 
underlying asset of the IBEX 35 options and futures used in our study. Consequent-
ly, these monthly prices are used to assess the predictive ability of all forecasting 
schemes for the 21-year sample.

3.3 Interest rates and dividends

For observation periods between January 1999 and December 2016, we employ the 
1-month Euribor. In earlier dates, since the Euribor was not available, we employ the 
1-month Mibor. All interest rates are consistently applied for each forecasting period 
using the corresponding act/360 day count convention. Using future contracts have 
the advantage of making dividend estimation irrelevant; therefore, dividend-related 
uncertainties do not affect our density forecasts.

12 Prior to 21 July 1992 IBEX 35 futures were not yet traded. Therefore, its return is proxied by the spot IBEX 

35, whose back-tested returns are available since 29 December 1989.
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4 Calibration

Model’s parameters are calibrated on a strictly ex-ante basis, considering only the 
current or historical information available at each observation date.

4.1 Historical densities

Historical models can be calibrated to any sufficiently long period of past prices. 
While this provides flexibility, different calibration windows generate different in-
put values and thus different density predictions. To cope with this uncertainty, we 
consider two calibration periods: (i) a shorter 6-month window and (ii) a longer 
5-year period.

The bootstrapping method does not require any statistical calibration, as it simply 
entails randomly selecting returns from the relevant historical periods. For the 
lognormal specification, the average return and standard deviation are obtained 

from the return set in each historical period r{ }h . Next, ARCH-based parameters 
are calibrated through maximum likelihood estimation (MLE). Even if the true 
innovations are not normal, Bollerslev and Wooldridge (1992) show that assum-
ing a Gaussian density for the residuals provides consistent parameter values. 
Therefore, for the GARCH-N and GJR-FHS models, the parameters are estimated 

by maximizing the log-likelihood of observing each historical return sequence r{ }h , 
which is given by:

( )σ σ
=

 = − − ∑ ε2 2 2

1

/ln ln( )
t

j
j

jjL (11)

For the GARCH-t, we employ a two-step estimation process. First, the MLE values of 
all parameters except 

�
d are obtained from (11). Then, following Christoffersen 

(2012), the MLE of 
�
d is calculated to match the excess kurtosis  of the GARCH re-

siduals as κ= +
�

6 / 4d .13

Finally, historical parameters are separately estimated for each observation date, 
performing 254 calibrations per model and observation window. For all time-series 
models, the calibrated dynamics are then used to generate 100.000 price paths, us-
ing equation (4).

13 We also tried to calibrate the GARCH parameters and 
�
d  simultaneously using the log-likelihood of the 

sample returns under a GARCH(1,1) with t(d) residuals. However, this approach did not generate im-

proved forecast results. 
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4.2 Risk-neutral densities

RNDs are obtained from the cross-section of option prices at each observation date. 
For the lognormal model, at-the-money volatilities are computed by linear interpola-
tion of the two nearest-to-the-money implied volatilities in each cross-section. In the 
Heston, Bates and Variance Gamma models, parameters are calibrated by minimiz-
ing the sum of pricing errors. We choose to work with relative errors, which effec-
tively assign a similar weight to all option contracts, thus generating more consist-
ent results across different strike regions14. Denoting Nt the number of option prices 
are available at date t, we estimate the parameter set Θ

�
 that minimizes the sum of 

relative errors for each stochastic model as

 

− Θ

=
=∑

�
( )

1
t

tN C Ci i
Cii

SRE

 

(12)

where Ci denote the mid-market price of each option in the cross-section and Θ
�

( )iC  
is the model-dependent value obtained with the parameter set Θ. All natural con-
straints on the admissible values of the model’s parameters are included in the cali-
bration15. For the Variance Gamma process, we also consider the restriction 

θ σ− > +1 2 / 2v , which is required to avoid numerical blow-ups in the calibration pro-
cess (see Itkin, 2010 and Crisóstomo, 2017). Following this procedure, risk-neutral 
parameters are estimated separately for each observation date, performing 254 cali-
brations per model.

Finally, for the Malz (2014) implementation of the Breeden-Litzenberger formula, 
we employ a step size ∆ = 0.01Ft, which avoids negative probabilities in our predic-
tive densities.

14 Despite its popularity, the use of absolute errors entails overweighting the more expensive ITM options 

while underweighting the cheaper OTM contracts, thus leading to potential biases. 

15 See Heston (1993), Bates (1996) and Madan, Carr, and Chang (1998) for a description of the admissible 

parameter values.
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5 Density forecasts verification

Evaluating financial densities is not particularly straightforward. While in classical 
inference experimental outcomes can be repeated under similar conditions to assess 
whether they come from a particular distribution, in financial forecasts only one 
realization is available to evaluate each entire density prediction. One way to tackle 
this issue is working with ensemble predictions, thus jointly assessing a sequence of 
predictive densities and their corresponding sequence of realizations.

However, even with ensembles, the limited availability of liquid options prices makes 
it difficult to generate a high number of non-overlapping density forecasts. To cope 
with potential sample issues, we evaluate the forecasting ability of all density schemes 
during a period of over 21 years, hence analyzing 254 non-overlapping monthly cy-
cles. To our knowledge, this is the highest available in comparable research.

Prior to 2007, most predictive densities were evaluated through PIT-based good-
ness-of-fit analyses. However, PIT sequences are not informative about the accura-
cy of the competing methods or the magnitude of their errors. Therefore, to supple-
ment PIT analyses, we compute two additional scoring rules. First, the logarithmic 
score, which evaluates each model accuracy in predicting the final realizations. Sec-
ond, a return-based CRPS, which ranks all density schemes in terms of their predic-
tion errors.

5.1 Goodness-of-fit analyses

Diebold, Gunther, and Tay (1998) show that the statistical consistency between a se-
quence of probabilistic forecasts and the corresponding sequence of realizations can 
be assessed through PIT-based analyses. For a given date t, the PIT represents the 
quantile of the ex-ante distribution at which the ex-post realization is observed. Thus,

−∞
= ∫

*

( )
tx

t tPIT f x dx 
(13)

Intuitively, in a well-specified model the realizations should be indistinguishable from 
random draws from the predictive distributions, and the sequence of PIT values 
should be therefore uniformly distributed in the (0, 1) range. However, statistical tests 
based on uniform distributions are typically not powerful enough for small samples 
(Mitchell and Hall, 2005). Consequently, Berkowitz (2001) proposes a reformulation 
that transforms the PIT values into a new sequence (T-PIT) that should be formed by 
i.i.d. N(0,1) variables if the predictive densities are correctly specified16. The Berkowitz

16 This reformulation brings about the more powerful tests associated with Gaussian variables.
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test is carried out by first computing the T-PIT values as −= Φ 1- ( )t tT PIT PIT  and next 
the AR(1) model

µ ρ µ ε−− = − +1- ( - )t t tT PIT T PIT  (14)

is estimated to jointly assess their mean, variance and serial correlation using the 
likelihood ratio test LR3 = µ σ ρ− �� �22( (0,1,0) –  ( ,  , ))L L , which compares the likelihood
of the restricted model, where  = 0, var(t) = 1 and  = 0, with that of an unrestrict-
ed one.

However, the LR3 test does not directly address the normality of the T-PIT values. 
Consequently, if a T-PIT sequence exhibits  = 0 and var(t) = 1, but it is non-normal 
in its higher moments, Berkowitz’s test will fail to detect such failures (Dowd, 2004). 
We thus complement the LR3 with the Kolmogorov-Smirnov (KS) and Jarque-Bera 
(JB) tests. The KS test examines whether the maximum distance between the T-PIT 
distribution and a N(0,1) variable is statistically significant, whereas the JB test con-
siders the skewness and kurtosis of the T-PIT values, hence assessing the higher 
moments not covered in the LR3 test.

5.2 The Logarithmic score

The accuracy of a forecasting scheme can be assessed by comparing the likelihood 
of the ex-post realizations evaluated with the ex-ante predictive densities. Following, 
Liu et al. (2007), Shackleton, Taylor, and Yu (2010) and Høg and Tsiaras (2011) we 
compute the log-likelihood of the realizations for each predictive scheme as

=
=∑ *1

log( ( ))
N

t tt
L f x (15)

Where ft denotes the ex-ante density computed at observation date t and xt* denotes 
the ex-post realization at time t*. Therefore, for each method, the logarithmic rule 
assigns a loss score to each actual realization depending on its ex-ante probability of 
occurrence, and aggregating these scores over the entire sample, we rank density 
predictions in terms of their out-of-sample accuracy. Furthermore, when all models 
are possibly misspecified (as it is the case in financial forecasts), the model with 
maximum L generates the predictive densities which are nearest to the true generat-
ing densities, according to the Kullback-Leibler Information Criterion (KLIC)17 (Bao, 
Lee, and Saltoğlu, 2007).

5.3 The Continuous Ranked Probability Score

The logarithmic score considers the likelihood of the ex-post realizations, but ig-
nores any other probability masses. In contrast, the CRPS considers the entire pre-
dictive distribution, measuring the statistical distance between the actual realiza-
tion and all other probabilistic outcomes (Matheson and Winkler (1976)). As a result, 
the CRPS gives good scores to densities that assign high probabilities to future val-

17 Kullback and Leibler (1951).



Financial density forecasts: A comprehensive comparison of risk-neutral and historical schemes 23

ues that are close, but are not identical, to the one materializing (Gneiting and Raft-
ery (2007)). Denoting by CDFmand CDFr the cumulative distributions of the forecast-
ing model and the realization, the CRPS is given by:

( )∞

−∞
= −∫

2
( ) ( )m r

tCRPS CDF x CDF x dx 
(16)

where:

<
=  ≥

*

*

0
( )

1
tr

t

for x x
CDF x

for x x  
(17)

Hersbach (2000) shows that the CRPS has the dimension of the parameter x (i.e.: 
IBEX 35 future points), which enters in the calculus through dx, thus facilitating the 
CRPS interpretation as a generalization of the mean absolute error for the entire 
density forecast.

However, in our empirical sample, the settlement prices of IBEX 35 futures range 
from a minimum of 1882 to a maximum of 15945.5. Therefore, a CRPS of e.g. 200 
index points may have markedly different interpretations depending on the obser-
vation date, hindering the comparability of the individual CRPS values across differ-
ent time periods. Consequently, we slightly modify the CRPS to consider return 
deviations instead of index points. Finally, to aggregate the CRPS values over the 
entire sample, we compute the average return-based CRPS as

( )∞

= −∞
= −∑ ∫

2

1

1
( ) ( )

Nrb m r

i
CRPS CDF x CDF x dx

N
(18)

For a given forecasting scheme, a CRPSrb of 0.05 can be interpreted as an average 
return deviation of 5% between the ex-post realizations and all the ex-ante probabil-
ity masses, thus providing a direct way to rank competing forecasts.
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6 Empirical results

Due to the high number of variants tested, we first summarize the different forecasting 
schemes and their naming conventions. We first consider two simple historical meth-
ods: a lognormal density (LN-HIS) and a bootstrapping of historical return (BTS). We 
also evaluate two standard GARCH models, either with normal or Student’s t innova-
tions (GARCH-N / GARCH-t). Finally, we employ an asymmetric GJR-GARCH model 
with filtered historical simulation (GJR-FHS). The required parameters for all 
historical models are calibrated using either a 6-month period (6m) or a 5-year history 
(5y).

For the RNDs, we consider again a simple lognormal model (LN-ATM). We then 
evaluate the density obtained with a stochastic volatility model (HESTON) and a 
Jump-diffusion process (BATES). Finally, we consider the purely discontinuous Var-
iance Gamma process (VG) and the Malz (2014) implementation of the Breeden-
Litzenberger formula (BL-MALZ).

6.1 PIT histograms visual inspection

The consistency between an ex-ante density scheme and the observed realizations 
can be intuitively assessed by a simple inspection of the PIT histograms. In reliable 
forecasts, the histogram of PIT values should resemble a uniform distribution, with 
departures from the flat line indicating regions where the frequency of realizations 
is higher or lower than in the ex-ante predictions. Figure 1 presents the PIT histo-
grams for all forecasting schemes.

Three main aspects can be highlighted. First, all historical methods calibrated to 
6-month significantly understate the probability of large losses. This can be seen in 
the higher ex-post occurrence of severe downside movements (i.e.: left-most histo-
gram bar) compared to the ex-ante probabilities (i.e.: horizontal dashed line).

Second, although all models calibrated to 5-year periods improve the left-tail fit, 
they conversely tend to allocate too much probability to significant upside 
movements. The most prominent bias is observed in the GARCH-t(5y), where 
almost no realiza-tions are observed in the right tail compared to the expected 
probabilities. The GJR-FHS(5y), in contrast, generates a reasonably flat PIT 
histogram, suggesting that this model produces consistent results across the entire 
density range.

Third, despite being calibrated to the same inputs, RNDs produce notably different 
outcomes depending on the model’s dynamics. Where the Bates model generates a 
fairly consistent histogram, the HESTON and BL-MALZ models show substantial 
biases, both allocating too much weight to the left tail while understating either the 
center or the right tail of the distribution.
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6.2 Statistical consistency: Goodness-of fit tests

A well-specified model should simultaneously pass the Berkowitz, JB and KS statistical 
tests, as rejection in any of these indicates a departure from the T-PIT normality as-
sumption in either: (i) the mean, sigma or autocorrelation, (ii) the asymmetry and kur-
tosis or (iii) the distance between the theoretical and the observed CDF. Tables 2 and 3 
summarize the results from the goodness-of-fit tests and the T-PIT descriptive statistics.

Histogram of PIT realizations FIGURE 1

The horizontal line represents the expected number of realizations for each density region, while vertical bars 

show the actual number of observations.

6.2.1 Historical methods

Of all 10 historical schemes, only the GJR-FHS(5y) and the GARCH-N(5y) 
simultane-ously pass the Berkowitz, JB and KS tests at a 5% significance level. 
Furthermore, the GJR-FHS(5y) exhibits more satisfactory p-values than the 
GARCH-N(5y) in all goodness-of-fit tests, thus becoming the most statistically 
reliable historical model.

The rejection in most historical methods (6 out of 10) comes from failures in the JB 
test, highlighting the importance of assessing the asymmetry and kurtosis of the T-
PIT distribution. For the rejected 6-month variants, Table 3 shows that the failure 
stems from both negative skewness and a lack of kurtosis. Moreover, where a 
stand-
ard Normal variable should exhibit ± 1.64 critical values for the 5th and 95th quan-
tiles, the T-PIT distribution for the rejected variants show values of (-1.71, -2.22) 
and (1.38, 1.78) respectively, exposing (i) a clear understatement of extreme losses 
in the ex-ante predictions and (ii) a significant asymmetry of results.

The LN-HIS(5y) and BTS(5y) failures also stem from a left-skewed and leptokurtic 
T-PIT distribution. Furthermore, the GARCH-t(5y) performs particularly bad, 
failing
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the Berkowitz test. Although this rejection can be attributed to the low variance of 
the GARCH-t(5y) T-PIT distribution (0.66), the most striking bias occurs in the right 
tail, where the fat-tailed Student’s t innovations generate an expectation of signifi-
cant upside movements that is not validated by the ex-post realizations. In contrast, 
all historical methods pass the KS test at a 5% level.

Goodness-of-fit tests and statistical consistency TABLE 2

Model

Berkowitz Jarque Bera
Kolmogorov-

Smirnov

Mu Variance Rho LR3
p-value

(%) Statistic
p-value

(%)
Statistic

(%)
p-value

(%)

Historical 6-months

LN-HIS(6m) 0,002 1,205 -0,011 4,733 19,25 7,24 3,02 5,23 47,51

BTS(6m) -0,045 1,217 -0,012 5,770 12,33 12,54 1,79 4,10 75,07

GARCH-N(6m) -0,120 1,200 0,024 8,309 4,00 8,48 2,32 5,94 32,81

GARCH-t (6m) -0,118 0,995 0,019 3,646 30,24 6,21 4,22 6,71 19,36

GJR-FHS(6m) -0,010 1,284 0,036 9,091 2,81 0,85 50,00 4,22 74,09

Historical 5-years

LN-HIS(5y) 0,041 0,978 0,060 1,388 70,82 57,11 0,10 8,27 5,84

BTS(5y) 0,001 0,948 0,065 1,375 71,14 35,95 0,10 6,50 22,41

GARCH-N(5y) -0,129 1,001 0,061 5,200 15,77 3,20 16,23 6,12 28,51

GARCH-t (5y) -0,101 0,662 0,052 21,999 0,01 4,18 9,77 8,41 5,19

GJR-FHS(5y) 0,027 1,094 0,094 3,726 29,26 1,76 36,88 3,83 83,68

Risk-neutral

LN-ATM 0,134 0,933 0,064 6,106 10,66 3,65 12,74 9,67 1,61

HESTON 0,114 0,865 0,056 6,501 8,96 43,19 0,10 10,35 0,80

BATES 0,108 1,020 0,079 4,589 20,45 1,24 50,00 7,10 14,69

VG 0,117 1,032 0,064 4,637 20,04 0,88 50,00 7,45 11,33

BL-MALZ 0,221 0,889 0,075 15,278 0,16 0,99 50,00 10,31 0,84

6.2.2 Risk-neutral methods

Two risk-neutral schemes, BATES and VG, simultaneously pass all three goodness-
of-fit tests, exposing the key role of discontinuous jumps in producing consistent 
density estimates. Specifically, the Bates model exhibits the highest p-values in all 
goodness-of-fit tests, becoming the most reliable RND scheme in terms of statistical 
consistency.

Densities obtained from risk-neutral methods perform better than historical models 
in the JB test. As shown in Tables 2 and 3, except for the Heston model, the T-PIT 
distributions generated from all RNDs exhibit asymmetry and kurtosis levels that 
are not statistically different from that of a standard Normal variable at a 5% level.

In contrast, the LN-ATM, HESTON and BL-MALZ are rejected in the KS test. For 
these schemes, the maximum deviation between the empirical and theoretical dis-
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tributions occurs at CDF points between 0.34 and 0.39, and for distances ranging 
from 9.37% to 10.35%. Therefore, contrary to most historical methods, these RNDs 
allocate too much probability to significant losses compared to the actual realiza-
tions. Moreover, the BL-MALZ fails the Berkowitz test (due to its biased 0.22 T-PIT 
distribution mean), whereas the Heston model is rejected in the JB test (due to nega-
tive skewness and a lack of kurtosis in the observed T-PIT values).

Descriptive statistics of the transformed PIT sequences TABLE 3

Model Mean
5th

percentil Median
95th

percentil Std Skewness Kurtosis AR(1)

Historical 6-months

LN-HIS(6m) 0,002 -1,972 0,011 1,779 1,100 -0,302 2,396 -0,011

BTS(6m) -0,044 -1,975 -0,034 1,695 1,106 -0,288 2,231 -0,012

GARCH-N(6m) -0,119 -2,225 -0,059 1,519 1,099 -0,416 2,700 0,025

GARCH-t (6m) -0,133 -1,708 -0,154 1,328 0,965 -0,265 2,251 0,038

GJR-FHS(6m) -0,009 -1,957 -0,096 1,858 1,139 0,113 2,749 0,036

Historical 5-years

LN-HIS(5y) 0,040 -1,537 0,066 1,584 0,993 -0,621 0,969 0,060

BTS(5y) -0,001 -1,686 0,033 1,492 0,980 -0,554 1,365 0,065

GARCH-N(5y) -0,129 -1,892 -0,131 1,455 1,004 -0,284 2,902 0,063

GARCH-t (5y) -0,102 -1,399 -0,108 1,226 0,818 -0,290 2,883 0,055

GJR-FHS(5y) 0,026 -1,621 -0,060 1,790 1,052 0,182 2,900 0,094

Risk-neutral

LN-ATM 0,134 -1,649 0,202 1,613 0,970 -0,294 2,913 0,063

HESTON 0,113 -1,346 0,148 1,582 0,933 -0,492 1,173 0,056

BATES 0,107 -1,732 0,148 1,691 1,015 -0,153 2,815 0,078

VG 0,116 -1,455 0,065 1,806 1,020 0,139 3,059 0,064

BL-MALZ 0,220 -1,303 0,203 1,815 0,948 0,115 2,769 0,074

6.3 Local accuracy: Log-likelihood score

Table 4 presents the log-likelihood comparisons for all density schemes. Following 
Shackleton, Taylor, and Yu (2010) we define the benchmark log-likelihood as the 
value for the simplest historical method, namely the LN-HIS(6m). For all other mod-
els, Table 4 shows the log-likelihood values in excess of the benchmark level. The 
sample is divided in two subperiods. The first comprises observations dates from 
November 1995 to December 2006, whereas the second covers the most recent 10 
years (January 2007 to December 2016).

6.3.1 Historical methods

The GJR-FHS(5y) and GARCH-N(5y) deliver the highest log-likelihoods among the 
historical methods (+28.74 and +26.29 over the benchmark level). Hence, these 
methods exhibit the greatest accuracy in predicting the ex-post realizations, also 
generating the densities which are closer to the true densities according to the KLIC.
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Table 4 also reveals two notable findings. First, in all historical schemes, the use of 
5-year calibration periods results in higher log-likelihoods than employing 6-month
windows. Second, for any given calibration length, the log-likelihoods of condition-
al volatility models are higher than those of lognormal densities or bootstrapped
returns, showing that the use of ARCH models pays off in terms of accuracy.

Most of these results are also robust across the subperiods; in all subsamples: (i) the 
GJR-FHS(5y) achieve the maximum log-likelihood among historical methods and (ii) 
all models calibrated to a 5-year history improve the log-likelihoods of 6-month-based 
counterparts. In contrast, the period from 2007 to 2016 is challenging for the two 
GARCH-t variants. While both perform well when significant upside or downside 
movements are observed, the GARCH-t is a poor predictor of the bulk of ex-post reali-
zations where more modest movements occur. Out of the 59 monthly dates in 2007-
2016 where the IBEX 35 returns remain within a ±4% range, in 31 of them either the
GARCH-t(5y) or the GARCH-t(6m) assign the smallest probability to the actual realiza-
tions. Conversely, in none of such dates these variants are the best performers.

Out-of-sample log-likelihoods TABLE 4

Model

Observation period

Nov 1995 - Dec 2006 Jan 2007 - Dec 2016 Entire Sample 

Historical 6-months

LN-HIS(6m) -971,46 -872,70 -1844,16

BTS(6m) 4,54 -2,20 2,34

GARCH-N(6m) 12,41 0,28 12,68

GARCH-t (6m) 10,23 -2,59 7,63

GJR-FHS(6m) 10,10 -0,37 9,73

Historical 5-years

LN-HIS(5y) 4,21 3,08 7,29

BTS(5y) 6,30 5,82 12,12

GARCH-N(5y) 17,82 8,47 26,29

GARCH-t (5y) 18,39 0,99 19,37

GJR-FHS(5y) 19,45 9,30 28,74

Risk-neutral

LN-ATM 15,86 5,62 21,48

HESTON 19,87 6,88 26,75

BATES 14,62 9,41 24,03

VG 19,65 11,63 31,28

BL-MALZ 16,20 11,49 27,69

Log-likelihoods are computed as the value in excess of the LN-HIS(6m) benchmark.

6.3.2 Risk-neutral methods

Table 4 shows that RND schemes typically exhibit higher log-likelihoods than his-
torical methods. The simplest risk-neutral model, the LN-ATM, achieves a log-
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likelihood score that is higher than in 8 out of 10 historical methods. Furthermore, 
the VG model delivers the highest log-likelihood of all schemes (+31.28 points over 
the LN-HIS(6m)), whereas the Bates model also achieves a good likelihood score 
(+24.03).

Despite failing in the goodness-of-fit tests, HESTON and ML-MALZ also deliver no-
tably good log-likelihoods. These contradictory results highlight the importance of 
multi-factor verifications in p robabilistic f orecasts, e xposing h ow p artial evalua-
tions may fail to detect seriously misspecified models. For instance, although the 
BL-MALZ ranks particularly high in the log-likelihood score, we previously conclud-
ed that this method was inconsistent in statistical terms, thus being unable to pro-
duce reliable forecasts across the entire density space.

The analysis by subperiods confirms these results and reveals an additional finding. 
While statistically consistent methods tend to show a similar log-likelihood perfor-
mance across different subperiods, non-consistent methods (i.e.: GARCH-t(5Y) or 
HESTON) exhibit a higher variability. This finding suggests that the statistical con-
sistency could be associated with a higher stability of the log-likelihoods in different 
subperiods.

6.4 Forecasting errors: Continuous Ranked Probability Score

Table 5 summarizes the prediction errors for all forecasting methods. CRPS values 
are calculated as the average return-based CRPS for the 21-year sample and the 
two subperiods, and expressed as the value in excess over the benchmark LN-
HIS(6m) level.

RNDs generally exhibit lower forecasting errors than historical-based counterparts. 
Of all 15 density schemes, the VG model achieves the best CRPS value (-0.286% 
compared to the benchmark level) followed by the Bates model (-0.274%). Further-
more, the RND scheme exhibiting the worst CRPS value, the BL-MALZ, outperforms 
8 out of 10 historical methods.

The GARCH-N(5y) and GJR-FHS(5y) produce the lowest CRPS among the historical 
methods (-0.260% and -0.257%, respectively). Furthermore, Table 5 also confirms 
the patterns observed in the log-likelihood analyses. First, in all historical schemes, 
the use of 5-year calibration periods results in significantly lower prediction errors. 
Second, density forecasts generated through ARCH-based models typically exhibit 
lower CRPS values than either lognormal distributions or a bootstrapping of his-
torical returns.

In contrast, the GARCH-t(5y) again provides an exception. In all 2007-16 monthly 
dates where the IBEX 35 futures move up by more than 10%, the GARCH-t(5y) out-
performs other historical methods. However, out of the 42 dates where the IBEX 
35 exhibit modest losses or small gains (i.e.: -5% to +1%), in 81% of them the 
GARCH-t(5y) produces the highest forecasting errors, making this method the 
worst-per-forming among the 5-year historical schemes .

Comisión Nacional del Mercado de Valores
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Out-of-sample Continuous Ranked Probability Score TABLE 5

Model

Observation period

Nov 1995 - Dec 2006 Jan 2007 - Dec 2016 Entire Sample 

Historical 6-months

 LN-HIS(6m) 3,672 3,801 3,737

 BTS(6m) 0,029 0,004 0,012

GARCH-N(6m) -0,051 -0,005 -0,034

GARCH-t (6m) -0,090 0,065 -0,021

GJR-FHS(6m) -0,057 -0,002 -0,036

Historical 5-years

LN-HIS(5y) -0,210 -0,209 -0,214

BTS(5y) -0,187 -0,200 -0,198

GARCH-N(5y) -0,313 -0,192 -0,260

GARCH-t (5y) -0,268 -0,079 -0,184

GJR-FHS(5y) -0,281 -0,220 -0,257

Risk-neutral

LN-ATM -0,272 -0,235 -0,259

HESTON -0,282 -0,184 -0,241

BATES -0,293 -0,242 -0,274

VG -0,309 -0,250 -0,286

BL-MALZ -0,210 -0,215 -0,217

CRPS figures are computed as the value in excess of the LN-HIS(6m) benchmark and expressed in percentage.

6.5 A holistic evaluation: The Integrated Forecast Score (IFS)

To provide a comprehensive ranking of the competing density schemes, we develop 
a novel scoring system that jointly considers the results from the statistical consist-
ency, local accuracy and forecasting error analyses. Following Gneiting and Katz-
fuss (2014), the IFS assign better scores to predictive methods that deliver a high 
forecasting accuracy subject to statistical consistency. In order to consistently ag-
gregate all the statistical scores, we first normalize the results obtained in the three 
previous criteria into standardized [0, 1] scales.

The normalized score for statistical consistency simultaneously considers both the 
number of rejections and the specific p-values achieved in the three goodness-of-fit-
tests. First, a 0.25 score is allocated to each variant for each non-rejected test. Next, 
the remainder 0.25 is assigned by averaging the position of each model p-values 
measured in an empirical [0, 1] scale. Specifically, the best and worst p-values in each 
test are assigned 1 and 0 values, whereas other variants are allocated in the [0, 1] scale 
through linear interpolation. This scoring rule effectively ranks all forecasting meth-
ods in terms of the number of tests passed while further discriminating among com-
peting densities by their specific scores in the Berkowitz, JB and KS tests.

To calculate the normalized local accuracy and forecasting errors scores, we consider 
that the overall log-likelihood and CRPS values for the 21-year sample are normally 
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distributed. This can be justified by the central limit theorem: since the overall log-
likelihood and CRPS values are computed by a sum of 254 independent and simi-
larly distributed observations, they should converge approximately to a normal dis-
tribution. Specifically, we first obtain the mean and variance of the observed overall 
values and then each method is ranked in the [0, 1] scale according to their quantile 
position in the assumed distribution. The IFS is finally obtained by averaging, for 
each method, the three standardized scores.

Table 6 shows the normalized scores for all density schemes. The first aspect to 
highlight is that RNDs deliver better IFS than historical models. Although we could 
argue that the performance of the risk-neutral schemes stands out due to the low 
IFS values of the 6-month historical variants, a comparison of RNDs and densities 
calibrated to 5-year periods confirms the outperformance of RNDs, with average IFS 
of 0.72 versus 0.64 in the 5-year variants. Of all forecasting methods, the VG model 
achieves the highest IFS (0.880), being the top-rated in both local accuracy and 
fore-casting errors, whereas the GJR-FHS(5y) ranks second in the IFS (0.864), and it 
is the best performer in statistical consistency.

Comprehensive ranking of forecasting schemes TABLE 6

Model IFS

Normalized Scores

Calibration
Statistical  

Consistency
Local 

 Accuracy
Forecasting  

Errors

Consitent schemes

VG 0,880 0.867 [3] 0.914 [1] 0.859 [1] Risk-neutral

GJR-FHS(5y) 0,864 0.929 [1] 0.868 [2] 0.793 [5] 5-year history

BATES 0,817 0.871 [2] 0.747 [6] 0.833 [2] Risk-neutral

GARCH-N(5y) 0,812 0.823 [4] 0.811 [5] 0.802 [3] 5-year history

Non-consistent schemes

LN-ATM 0,665 0.534 [11] 0.662 [7] 0.800 [4] Risk-neutral

BL-MALZ 0,619 0,334 [13] 0.846 [3] 0.679 [7] Risk-neutral

HESTON 0,612 0.260 [15] 0.823 [4] 0.751 [6] Risk-neutral

GARCH-t(5y) 0,558 0.521 [12] 0.585 [8] 0.567 [10] 5-year history

BTS(5y) 0,511 0.605 [6] 0.312 [10] 0.615 [9] 5-year history

LN-HIS(5y) 0,476 0.588 [8] 0.170 [13] 0.670 [8] 5-year history

GJR-FHS(6m) 0,341 0.660 [5] 0.234 [11] 0.127 [11] 6-month history

GARCH-t(6m) 0,280 0.561 [10] 0.178 [12] 0.103 [13] 6-month history

GARCH-N(6m) 0,249 0.291 [14] 0.332 [9] 0.123 [12] 6-month history

BTS(6m) 0,242 0.592 [7] 0.075 [14] 0.059 [15] 6-month history

LN-HIS(6m) 0,232 0.574 [9] 0.048 [15] 0.072 [14] 6-month history

The IFS ranking also validate our previous findings regarding historical methods. 
First, in all predictive models the use of 5-year calibration periods results in higher 
IFS than employing 6-month windows. Second, for any given calibration period, all 
ARCH-based models achieve better IFS values than either lognormal densities or a 
bootstrapping of historical returns.
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Given the distinct focus of the log-likelihood score and the CRPS (i.e.: local accuracy 
vs. global errors), it is remarkable that most density schemes simultaneously achieve 
either a good or a bad ranking in both. The rationale stems from the relation be-
tween the probability assigned to a given observation and its distance to other prob-
ability masses in mound-shaped distributions18.

However, this is not always the case. For instance, while the addition of jumps sig-
nificantly improves the IFS value of the Bates model compared to Heston dynam-
ics19, its impact in the CRPS and log-likelihood scores goes in opposite directions. 
The difference can be attributed to the excessively fat-tailed ex-ante distributions 
generated by the Heston model, which assign too much weight to extreme events, 
thus performing well in the most likelihood-sensitive observation dates, but it con-
versely results in higher forecasting errors when the entire ex-ante distribution is 
considered in the computations.

18 In such distributions, realizations falling near the tails (center) of the distributions tend to exhibit (i) a low 

(high) log-likelihood score and (ii) a high (low) distance to the other probability masses, thus leading to 

either good or bad ranking in both CRPS and log-likelihood scores.

19 The IFS gains are driven by the improvement in statistical consistency: through the added jumps, the 

Bates model simultaneously passes all goodness-of-fit tests, whereas the Heston model fails the JB and 

KS tests.
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7 Conclusions

This paper presents a comprehensive analysis of the most commonly used density 
schemes in financial economics. Through the development of a novel Integrated 
Forecasting Score (IFS), we show that risk-neutral densities outperform historical-
based predictions in terms of information content. The IFS is constructed by aggre-
gating the statistical consistency, local accuracy and forecasting errors results into a 
single normalized measure.

Using an option dataset covering from 1995 to 2016, we find that the Variance 
Gamma model simultaneously delivers the largest out-of-sample log-likelihood and 
the lowest forecasting errors, thus ranking first in the IFS. In contrast, the ARCH-
based GJR-FHS achieves the best score in statistical consistency, generating the 
most reliable forecasts across the entire density range.

We also find two strong patterns regarding historical models. First, in all density 
schemes the use of 5-year calibration periods outperforms the forecasting ability of 
6-month calibration windows. Second, densities obtained from ARCH-type models 
are more informative than those generated with lognormal methods or a bootstrap-
ping of historical returns. Conversely, frequently used benchmarks like the Heston 
model or the non-parametric Breeden-Litzenberger formula yield biased predictions 
and are rejected in statistical tests.

Looking forward, optimally mixing the information content of risk-neutral and his-
torical schemes, and exploring the use of machine learning algorithms to calibrate 
such models is worthy of research. Moreover, while the IFS provides a simple solu-
tion to a complex verification problem, applying the IFS in other datasets or testing 
its performance in real trading strategies could help to validate the usefulness of 
this measure as a new tool in financial forecasting. These items remain in our agen-
da for future research.
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