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Abstract

This paper compares the CPU effort and numerical biases of six Fourier-based im-
plementations. Our analyses focus on two jump models that can consistently price 
options with different strikes and maturities: (i) the Bates jump-diffusion model, 
which combines jumps with stochastic volatility and (ii) the Asymmetric Variance 
Gamma (AVG) model, a pure-jump process where an infinite number of jumps can 
occur in any interval of time. We show that both truncation and discretization er-
rors significantly increase as we move away from the diffusive Black-Scholes-Mer-
ton dynamics. While most pricing choices converge to the Bates reference values, 
Attari’s formula is the only Fourier-based method that does not completely blow up 
in any AVG problematic region. In terms of CPU speed, the strike vector computa-
tions proposed by Zhu (2010) significantly improve the computational burden, ren-
dering the use of fast Fourier transforms and plain delta-probability decompositions 
inefficient.

Keywords: Jump processes, Bates model, Variance Gamma, Fourier transforms, 
pricing errors, speed comparisons.

JEL Classification: G13, C52, C63.
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1. Introduction

Since the seminal papers of Black and Scholes (1973) and Merton (1973), processes 

where the asset price diffuses continuously have been extensively used in risk man-

agement and option pricing. Diffusion models may exhibit a variety of forms, in-

cluding stochastic volatility, mean-reversion or seasonality, and their widespread 

use highlights the success that these models have achieved in financial modelling. 

Yet casual observation reveals that the prices of traded assets routinely undergo 

jumps. Discontinuities can occur, for instance, due to unexpected news, due to trad-

ing restrictions or simply because there is a substantial imbalance between buy and 

sell orders.

The importance of jump modelling becomes evident if we analyze the prices of 

short dated out-of-the-money (OTM) options. The value of these contracts critically 

depends on the occurrence of extreme underlying movements. However, empirical 

studies have shown that diffusion-only models cannot consistently generate the 

asymmetry and fat-tails that are routinely implied by OTM option prices (see, Bak-

shi, Cao, and Chen, 1997 or Cont and Tankov, 2004)1.

This paper contributes to the option pricing literature by examining the CPU speed 

and accuracy of six Fourier-based pricing choices. Specifically, our analyses focus on 

two jump-related models that have been proposed as a framework to consistently 

price options with different strikes and maturities. First, the Bates (1996) jump-dif-

fusion model, which blends the Heston (1993) dynamics with lognormally distrib-

uted price jumps. Second, the Asymmetric Variance Gamma of Madan, Carr, and 

Chang (1998), a purely discontinuous process where the underlying assets evolve 

through a combination of many small jumps and rare big moves.

Both models are implemented by means of characteristic functions. Fourier trans-

forms are rapidly gaining traction in finance and most of the option pricing models 

developed in the last the last decade have relied on characteristic functions to obtain 

option prices. Thus, a better understanding of the different Fourier implementa-

tions is paramount in order to avoid pricing errors. Specifically, we investigate the 

speed and biases of a broad range of Fourier pricing choices: Delta-probability de-

compositions, fast Fourier transforms and Carr-Madan’s and Attari’s formulas, 

while also considering strike vector computations for all methods where vectoriza-

tion is possible.

1 Foresi and Wu (2005) also attribute the relatively higher prices of OTM puts to a combination of higher 

demand stemming from concerns about market crashes and limited supply due to hedging difficulties.
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The rest of the paper is organized as follows. Section 2 reviews the use of character-
istic functions and explains the numerical setup. Section 3 present the Bates model 
and compares the accuracy and speed of the different implementation choices. Sec-
tion 4 describes the AVG model and considers three regions where Fourier methods 
can lead to notably different accuracies. Finally, section 5 summarizes our conclu-
sions.
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2. Characteristic functions for option pricing

Under the no-arbitrage paradigm, option prices can be calculated as the present 
value of the expected option payoff under the risk-neutral measure

 [ ]0 ( )rT
Q tV e E H S−=  (2.1)

where 0V  is the option value at time t = 0, tS  the underlying price, r the risk-free rate, 
T  the time to maturity, ( )tH S  is the option payoff and [ ]QE •  denotes the expecta-
tion operator under the risk-neutral measure.

For many pricing process, the expected option payoff can be computed in terms of 
the underlying asset’s density function. For instance, the payoff of a European call 
with strike K and expiration T  is given by ( ) ( )t TH S S K += − . Thus, its present 
value at time t = 0 can be obtained as

 0
( , ) ( ) ( )rT

T T TC T K e S K q S dS
∞− += −∫  (2.2)

where ( )Tq S  is the risk-neutral density of the underlying asset tS  at the terminal 
date T . However, there are numerous asset processes that do not exhibit a tractable 
density. For these cases, pricing models generally rely on characteristic functions in 
order to obtain option prices. Characteristic functions are defined as the Fourier 
transform of the probability density functions. Thus, both functions exhibit a one-
to-one correspondence and all the probabilistic evaluations that can be performed 
through a tractable density can be also obtained with characteristic functions. Fur-
thermore, the characteristic functions of many asset specifications, particularly in 
connection to stochastic volatility and jumps, exhibit simpler analytical forms and 
are more tractable than their corresponding density functions.

The existing literature considers several alternatives to compute options prices us-
ing characteristic functions. In this paper we analyze six choices that can be broadly 
categorized into four approaches: the delta-probability decomposition, the Carr-
Madan formula, the Attari formula and the fast Fourier transform.

2.1 The Delta-Probability Decomposition (DPD)

The DPD was initially developed by Heston (1993). By expanding (2.2), it is straight-
forward to show that the price of a European call can be expressed as

 0 1 2( , )   rTC T K S e K−= Π − Π  (2.3)
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where 1Π  and 2Π  are two probability-related quantities. Specifically, 1Π  is the op-
tion delta while 2Π  is the risk-neutral probability of exercise P( )TS K> .

In the Black-Scholes-Merton (BSM) model and other simple pocesses, these proba-
bilities can be directly computed in terms of the underlying asset density function. 
However, for processes that do not exhibit a tractable density, Bakshi and Madan 
(2000) show that these probabilities can be computed as

 

ln( )
ln

1 0
ln

( )1 1 Re
2 ( )

T

T

iw K
S

S

e w i
dw

iw i
ψ

π ψ

−
∞ ⎡ ⎤−

Π = + ⎢ ⎥
−⎢ ⎥⎣ ⎦

∫  (2.4)

 

ln( )
ln

2 0

( )1 1 Re
2

T

iw K
Se w

dw
iw
ψ

π

−
∞ ⎡ ⎤

Π = + ⎢ ⎥
⎢ ⎥⎣ ⎦

∫  (2.5)

Where ln TS
ψ  is the characteristic function of the log-asset price and Re[ ]•  denotes 

the real operator. European call prices can be obtained by first computing 1Π  and 

2Π , and then substituting these values into (2.3), whereas European puts can be 
determined through the put-call parity. We refer to Crisostomo (2014) for a mathe-
matical derivation and an implementation of the DPD method in MATLAB.

In a comprehensive survey, Schmelzle (2010) concludes that the integrands in (2.4) 
and (2.5) decay rapidly and can be approximated through numerical integration. 
However, the DPD implementation still faces three potential shortcomings:

1.  Discontinuities in the integrand functions. The characteristic function of 
many stochastic volatility and jump-related processes contains a complex loga-
rithm that may generate numerical instability. For instance, Schobel and Zhu 
(1999) give several examples where Heston’s original characteristic function 
shows discontinuities and numerical integration may lead to incorrect option 
prices. This problem, however, can be circumvented in many models by an 
appropriate reformulation of the underlying characteristic function (Albrecher 
et al., 2007 and Lord and Kahl, 2010).

2.  Singularity at w= 0. The integrands in (2.4) and (2.5) are not defined at the 
lower integration limit. Lewis (2001) analyzes this singularity and concludes 
that the integrands are finite as w tends to zero. Nevertheless, this divergence 
should be treated with caution, since inappropriate handling can lead to pric-
ing errors.

3.  Number of evaluations: To obtain option prices through the DPD, three char-
acteristic function evaluations are required per integration point (two for 1Π  
and another one for 2Π ). Thus, if the integration grid is divided into N  points, 
3N  evaluations are needed per option priced or 3NM for a set of M  options. 
While this may not be a problem for occasional pricing, the CPU effort can 
become burdensome when calculating many option prices simultaneously or 
in real-time contexts.
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2.2 Strike Vector Computations

Zhu (2010) proposes a simple yet effective trick to reduce the computational effort 
of the DPD and other Fourier methods. The key insight is that the required charac-
teristic function evaluations, both in 1Π  and 2Π , differ for each expiry, but are inde-
pendent of the strike. Therefore, for a given T , characteristic function values can be 
computed once and re-used to price options with different strikes. This idea can be 
implemented through the use of vectorization or by a catching technique, as sug-
gested by Kilin (2011).

Specifically, if we introduce a vector of strikes K in the calculation of (2.4) and (2.5), 
the probability vectors, 1Π  and 2Π , are given by

 

ln( )
ln

0
ln

( )1 1 Re
2 ( )

T

T

iw
S

S

e w i
dw

iw i
ψ

π ψ

−
∞ ⎡ ⎤−

= + ⎢ ⎥
−⎢ ⎥⎣ ⎦

∫
K

1Π  (2.6)

 

ln( )
ln

0

( )1 1 Re
2

T

iw
Se w

dw
iw
ψ

π

−
∞ ⎡ ⎤

= + ⎢ ⎥
⎢ ⎥⎣ ⎦

∫
K

2Π  (2.7)

And, thus, the vector of call prices can be computed as

 0( , )   rTT S e−= −1 2C K Π K Π  (2.8)

Since the characteristic function evaluations are typically the most burdensome part 
of the calculations, vectorization significantly reduces the CPU effort while preserv-
ing two distinct advantages of the DPD: (i) the flexibility to choose any strikes and 
any integration method and (ii) the intuitive probabilistic pricing á la Black-Scholes.

2.3 Combining 1Π  and 2Π  into a single integral

Attari (2004) proposes a DPD reformulation that calculates option prices through a 
single integral. Specifically, by exploiting the similarities in 1Π  and 2Π , Attari’s 
formula merges the integrands in (2.4) and (2.5) into a single pricing expression of 
the form

 0 0

1 1( , )  ( )
2

rT
AC T K S e K I w dw

π

∞− ⎛ ⎞= − +⎜ ⎜
⎝ ⎠

∫  (2.9)

where

ln lnIm( ( )) Re( ( ))
ln ln

2

(Re( ( )) ) cos( ln( )) (Im( ( )) )sin( ln( ))
( )

1

S ST T

T T

w w
S Sw w

A

w w K w w K
I w

w

ψ ψψ ψ
=

+ + −

+
 (2.10)

Compared to the integrands in the DPD, ( )AI w  includes a quadratic term in the de-
nominator, ensuring a faster decay rate. Furthermore, strike vectorizations can also 
be employed to speed up the computations, since the characteristic function evalu-
ations are independent of the strike. On the downside, this method does not provide 
the risk-neutral probabilities or the option’s delta, and therefore these figures must 
be calculated separately, if needed.
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2.4 The Carr-Madan formula and the fast Fourier transform (FFT)

The FFT is an algorithm designed to compute Fourier transforms in an efficient way. 
The first application for option pricing was developed by Carr and Madan (1999). 
The algorithm exploits periodicities and symmetries in the characteristic function 
evaluations to reduce the number of operations. For a given maturity, the FFT al-
lows the simultaneous calculation of option prices for a variety of strikes.

The Modified Call Price

Since the FFT can only be used in square-integrable functions, Carr-Madan’s ap-
proach considers a modified call price where a dampening factor ln( )Keα  is intro-
duced to avoid the divergence at w = 0

 ln( )
mod ( , ) ( , )KC T K e C T Kα=  (2.11)

where mod ( , )C T K  is the modified call price and 0α >  is the dampening parameter. 
Using the Fourier inversions, Carr-Madan’s paper shows that the original call price 
can be recovered as:

 

ln( )ln( )
ln

2 20

( ( 1) )
( , ) Re

(2 1)
T

iw KK rt
Se w ieC T K dw
w i w

α ψ α

π α α α

−− − ∞ ⎡ ⎤− +
= ⎢ ⎥

+ − + +⎢ ⎥⎣ ⎦
∫  (2.12)

where ln TS
ψ  is the characteristic function of the log-asset price.

Integration with the Fast Fourier Transform

Although (2.12) can be directly used to compute call prices, it is common to evaluate 
it through the FFT. The FFT specifically computes sums of the form:

 
2 ( 1)( 1)

1
( ) ( ) 1,....,

N i m n
N

n
y m e x n for m N

π
− − −

=

= =∑  (2.13)

Therefore, before applying the algorithm, the call prices in (2.12) should be ex-
pressed in the required summation form. The first step is to approximate the inte-
gral by a grid of N  equidistant points, thus establishing an upper integration limit 
of N w∆ . Next, by setting the grid points as ( 1)nw n w= − ∆  and using the trapezoi-
dal rule, the price of a single European call can be computed as

 ln( )

1
( ) ( )n

N
iw K

n
n

C K e f w w−

=

≈ ∆∑
�

 (2.14)

where

 
lnln( )

2 2

( ( 1) )
( )

(2 1)
TS nK rT

n
n

w i
f w e

w i w
α ψ α

α α α
− − +

=
+ − + +

 (2.15)

However, the FFT algorithm takes an N -sized vector ( )x n as an input and returns 
another N -sized vector ( )y m  as output. Consequently, the choice of N  simultane-
ously determines the number of strikes and the integration grid size. In addition, 
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two other FFT constraints must be respected. First, the strikes must be placed at an 
equal distance in the log space2. Second, the Nyquist relation 2 /k w Nπ∆ ∆ =  must 
also be obeyed, effectively imposing an inverse relationship between the integration 
step width w∆  and the sparseness of the output prices.

Putting all together, the prices of N  call options can be simultaneously obtained as

 
2 ( 1)( 1)

1
( ) ( ) 1,....,

N i n m
N

m n
n

C k e g w for m N
π

− − −

=

≈ =∑
�

 (2.16)

where

 
ln

2 2

( ( 1) )
( )

(2 1)
Tn m S nibw k rT

n
n

w i
g w e w

w i w
α ψ α

α α α
+ − − +

= Δ
+ − + +

 (2.17)

Finally, to harness the speed advantages of the FFT, the sums in (2.17) should be 
divided in two sequences: one with the odd terms and another with the even ones. 
The key computational insight is that the characteristic function evaluations re-
quired in the odd sequence are repeated for the even one. Thus, previously com-
puted values can be used to reduce the number of operations. This strategy can be 
reinforced by decomposing the odd and even sequences into two additional subse-
quences. And continuing this decimation until we obtain / 2N  subsequences of 
length 1, the FFT algorithm is able to reduce the computational effort from an order 
of 2N  to an order of 2log ( )N N .

FFT limits and alternatives

The main FFT drawbacks stem from the restrictions imposed in the strike and inte-
gration grids:

1.  Strike grid. A fully efficient decimation strategy requires the number of strikes 
to be a power of 2. Moreover, those 2N strikes must be equidistantly placed in 
the log space. This means that the number and location of the resulting FFT 
prices will rarely match our needs. Prices closer to our strike requirements can 
be computed by increasing N  or by interpolating across the prevailing strikes, 
but both strategies will impact the merits of the FFT: a higher N  implies calcu-
lating more option prices than needed, whereas interpolation affects pricing 
accuracy.

2.  Relationship between the strike and integration grid. The constraint 
2 /k w NπΔ Δ =  imposes an inverse relationship between the integration step 

width and the output FFT prices. Specifically, a finer integration grid will lead 
to coarser strikes, and if we try to improve the pricing accuracy by reducing 
w∆  the output prices will be more dispersed, thus increasing the need for in-

terpolation.

3.  Integration methods: Since the FFT requires equidistant integration points, 
only the most simple quadrature rules can be used to recover option prices. 

2 To this end, we define the strike grid as max 0( 1) ln( )mk k m k S= − + − ∆ + with 1,....,m N= and 

lnk K= . This choice entails setting the FFT strikes symmetrically centered around 0K S= .
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This compares unfavorably to other Fourier-based methods, where more effi-
cient integration techniques can be used to speed up the calculations.

Summing up, the FFT exhibits a tradeoff between: (i) the accuracy of integration, (ii) 
the need for interpolation and (iii) the speed of computation. Carr and Madan (1999) 
suggest using an N= 4096. However, for most equity underlyings, there are rarely 
more than 20 or 30 actively traded strikes per maturity. Therefore, if we employ a 
high N , only a small fraction of the final FFT call prices will fall within the usual 
trading ranges, which in turn means that many of the resulting prices might be left 
unused3.

To address these constraints, Chourdakis (2005) introduces a Fractional FFT method 
(FRFT). By relaxing the restriction 2 /k w NπΔ Δ = , the FRFT provides greater flex-
ibility in the construction of the strike and integration grids, thus avoiding unneces-
sary function evaluations. Similarly, Fang and Oosterlee (2009) propose Fourier-co-
sine expansions as an alternative to calculate the Fourier integrals, showing that the 
so-called COS method achieves better convergence rates that the quadrature re-
quired in the FFT. However, neither of these methods relax the requirement to place 
all the strike and integration points equidistantly, which is a fundamental FFT con-
straint.

Alternatively, the Carr-Madan formula in (2.12) can be also used to price call options 
without further manipulation. For instance, Matsuda (2004) uses a slightly modified 
version of (2.12) and reports accurate prices and negligible approximation errors for 
a variety of option models. In addition, Carr-Madan’s formula can be optimized 
through the use of strike vector computations, since the characteristic function eval-
uations are independent of the strike.

2.5 Numerical exercises: Setup and error analyses

We investigate the pricing biases and computational speed of six pricing choices:

–  DPD: Delta Probability Decomposition. Call values are individually computed 
through equations (2.3) to (2.5).

–  DPD-OPT: Optimized DPD. Strike vector computations are used to simultane-
ously compute call values for a variety of strikes. Equations (2.6) to (2.8) are 
used.

–  AT-OPT: Optimized Attari approach. Call values are computed with equations 
(2.9) and (2.10). CPU speed is optimized through strike vectorizations.

–  FFT: Standard FFT. A single fast Fourier transform is used to obtain option 
prices. Vector operations (instead of loops) are used to improve the perfor-
mance. After experimenting with different values, we settle for an α= 1.75, 
which delivers a 10-10 accuracy for all the models tested. Options that do not 
fall within the FFT strike grid are exponentially interpolated.

3 For example, out of the 4096 FFT prices calculated by Carr and Madan (1999) only about 67 fall within the 

±20% log-strike interval (Chourdakis, 2005).
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–  FFT-SA: Strike-adjusted FFT. Call values are determined by successive FFT 
runs. Strike grids are adjusted to cover all the required options in at least one 
FFT run, thus avoiding interpolation.

–  CM-OPT: Optimized Carr-Madan formula. Call values are computed using 
equation (2.12) and strike vector computations.

These Fourier implementations can be subject to three forms of error:

1.  Truncation error: All methods require evaluating integrals in w= [0, ∞). To nu-
merically approximate such integrals, the integration range must be truncated 
by choosing an appropriate upper limit, hence introducing a truncation error. 
For a given integration endpoint, the order of truncation errors will be different 
depending on (i) the mathematical model used to describe the underlying asset 
dynamics and (ii) the particular implementation employed to obtain option pric-
es. The rationale is that characteristic functions for different underlying models 
exhibit different decay rates, whereas the Fourier integrands described in sub-
sections 2.1 to 2.4 also portray varying decay speeds. Lee (2004) provides a com-
prehensive analysis of truncation errors in Fourier pricing methods.

2.  Discretization error: The truncated integral is evaluated by using a finite inte-
gration grid, thus introducing a sampling error. Different characteristic func-
tions and Fourier implementations also affect the smoothness of the integran-
ds, thus impacting discretization errors. To facilitate comparisons, in our 
analyses all the option prices are computed through the trapezoidal rule. How-
ever, most pricing choices specifically support non-equidistant integration. 
Therefore, the results for the DPD, DPD-OPT, AT-OPT and CM-OPT should be 
interpreted as a lower-limit estimate on the potential improvement that such 
methods offer over the FFT and FFT-SA.

3.  Interpolation error: This error arises when a pricing method does not provide 
the price for a desired strike. Consequently, in our setting, this error is specific 
to the FFT, since all the other variants can evaluate any required strike.

To discriminate between these three errors, option prices in our accuracy compari-
sons are calculated (i) with a high precision of 10-10, (ii) using a common integration 
domain and (iii) using comparable integration grids of size 2N. Conversely, for our 
speed comparison, the accuracy is set at a more realistic 10-4 and we relax the inte-
gration domain and 2N sampling constraints, thus allowing each method to opti-
mize its integration requirements. Specifically, we compare how fast each method 
is able to price a variable number of options, covering a wide range of needs from 1 
to 2500 options. Calculations are performed using an Intel Core i7-3770 CPU @ 
3.40GHz and 16 GB RAM.

2.6 A first test with the BSM model

To form a baseline, we first apply all Fourier implementations to the BSM model, 
whose characteristic function is given by

 
2 2 2

0[ln(S ) ( 0.5 ) ] 0.5
ln( ) ( )t

iw r t w tBSM
S w e σ σψ + − −=  (2.18)
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2.6.1 Pricing accuracy in the BSM model

We employ the parameters: 0S = 50, σ= 0.25 and r= 0.05. Accuracy is evaluated at six 
option configurations, spanning three different strikes K= [30, 50, 70] and two ma-
turities T= [0.1, 1]. The integration range is set at w= (0, 100] and reference values are 
computed through the BSM closed-form solution. Table 1 shows the results.

BSM pricing results for different implementations and grid sizes. Shaded areas  
indicate an accuracy of 10-10  TABLE 1

0.1T = 1T =

Method N 30K = 50K = 70K = 30K = 50K = 70K =

DPD /

DPD-OPT

16 20.1496269249 1.7004462835 0.0000139309 24.1223640619 6.1788617825 1.1638295106

32 20.1496256242 1.7004462835 0.0000139309 21.5036300968 6.1679994652 0.8986170065

64 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

128 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

512 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

1024 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

4096 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

AT-OPT

16 -8.7061837657 -27.155363106 -28.855795459 -7.2665016957 -22.687643605 -27.943228414

64 19.2367194274 0.7875400867 -0.9128922660 20.5907226339 5.2550932683 -0.0142891923

128 20.1335448783 1.6843655375 -0.0182208247 21.4875480848 6.1519187192 0.8825362585

256 20.1496204558 1.7004411150 0.0000087624 21.5036236623 6.1679942967 0.8986118360

512 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

1024 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

4096 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

FFT

16 28.2798382222 8.7539883498 5.7137666216 30.9956621087 13.3705415064 6.8339658821

64 20.1839002131 1.7436317072 0.0429040929 21.5403695644 6.2112193777 0.9409450521

128 20.1404210818 1.7004848691 0.0000664350 21.4968737300 6.1680380513 0.8969426660

256 20.1403824743 1.7004462835 0.0000133825 21.4968351258 6.1679994652 0.8969030154

512 20.1403824743 1.7004462835 0.0000133824 21.4968351258 6.1679994652 0.8969030154

1024 20.1403824743 1.7004462835 0.0000133824 21.4968351258 6.1679994652 0.8969030154

4096 20.1403824743 1.7004462835 0.0000133824 21.4968351258 6.1679994652 0.8969030154

FFT-SA

16 28.5412052262 8.7539883498 5.7155184631 31.3434804938 13.3705415064 6.8210738060

64 20.1931245646 1.7436317072 0.0428858381 21.5471484645 6.2112193777 0.9415371960

128 20.1496642149 1.7004848691 0.0000525116 21.5036674216 6.1680380513 0.8986555860

256 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

512 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

1024 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

4096 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

CM-OPT

16 28.5412052262 8.7539883498 5.7155184631 31.3434804938 13.3705450641 6.8210738060

64 20.1931245646 1.7436317072 0.0428858381 21.5471484645 6.2112193777 0.9415371960

128 20.1496642148 1.7004848691 0.0000525116 21.5036674216 6.1680380513 0.8986555860

256 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

512 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

1024 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

4096 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045

Ref. value 20.1496256242 1.7004462835 0.0000139309 21.5036288308 6.1679994652 0.8986170045
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As Table 1 shows, most Fourier methods converge well to the reference BSM value. 
The only exceptions are the OTM and ITM strikes in the standard FFT, which fail to 
provide full accuracy. Specifically:

1.  The DPD and DPD-OPT require between 16 and 64 sampling points to achieve 
an accuracy of 10-10, the lowest of all methods.

2.  For the AT-OPT, full convergence is achieved with 512 points. However, due to 
discretization errors, negative option prices are obtained for all strikes and 
maturities when the integration grid is small.

3.  The FFT achieves an accuracy of 10-10 for the two ATM options. Conversely, a 
single FFT run is unable to attain full convergence for the other strikes. The 
biases stem from the FFT constraints explained in section 2.4. Specifically, a 
single FFT grid cannot exactly match all the required strikes, and therefore the 
OTM and ITM prices have been exponentially interpolated, introducing an 
interpolation error.

4.  When all the strikes are evaluated through an FFT grid, the FFT-SA delivers 
full convergence for all options. 256 sampling points are required to attain full 
accuracy.

5.  Finally, the CM-OPT results mirror those of the FFT-SA. Both methods rely on 
the same pricing equation and can evaluate any required strike. Therefore, 
when the same sampling grid and integration domain is used, they are equiva-
lent in terms of accuracy.

In summary, both truncation and sampling errors are small and easy to manage in 
the BSM model: High precision values can be obtained in the domain w = (0, 100] 
integrating with sizes between 16 and 512 points (i.e. 0.16 to 5.12 points per unit of 

w ). These results derive from the well-behaved diffusive properties of the geomet-
ric Brownian motion, which in turns entails a smooth and rapidly decaying charac-
teristic function.

2.6.2 Computational speed in the BSM model

To investigate the CPU effort, we first obtain the w-ranges required to attain full 
convergence and the number of sampling points that deliver an accuracy of 10-4. 
Reported times are calculated by averaging the CPU effort in 100 independent runs. 
Table 2 shows the results.
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CPU times required to achieve a 10-4 accuracy in the BSM model [milliseconds] TABLE 2

N. of options priced

Method W-range Minimum N 1 10 25 100 500 2500

DPD (0, 89]  26 0.17591 1.79141 4.37267 17.39508 88.43997 435.05447

DPD-OPT (0, 89]  26 0.17591 0.23206 0.27932  0.35656  1.08824   3.63379

AT-OPT (0, 79] 173 0.15621 0.24390 0.32789  0.87359  2.68967  18.10151

FFT (0, 77] 128 0.52439 0.52439 0.52439  0.52439  5.78116 317.90680

CM-OPT (0, 77]  97 0.10406 0.15385 0.19354  0.50436  1.68204 11.28898

1.  Despite requiring the highest w-range, the DPD and DPD-OPT only need 26 
sampling points to achieve a 10-4 accuracy. Performance-wise, restarting com-
putations for each new option clearly drags down the DPD speed, as CPU times 
increase almost linearly with the number of options. Conversely, strike vector 
computations significantly improve the computational efforts. For instance, 
when 2500 options are considered, the DPD-OPT is roughly 120 times faster 
than the unoptimized DPD. Moreover, due to its high sampling efficiency, the 
DPD-OPT is the fastest alternative when pricing 100 or more options.

2.  The AT-OPT single-integral strategy is faster than the DPD-OPT for any fixed 
integration grid. However, to achieve a comparable 10-4 accuracy, the AT-OPT 
requires almost 7 times more integration points (173 vs 26). Consequently, as 
the number of options increases, the DPD-OPT more than offsets the initial 
AT-OPT advantages.

3.  Leaving aside interpolation biases, the FFT requires 128 points to achieve the 
target 10-4 accuracy. Therefore, the FFT always computes a minimum of 128 
option prices, impacting its performance when fewer prices are required. The 
FFT results improve when more options are considered, and quickly surpass 
the speed of the unoptimized DPD. However, on average, the FFT is still 5, 7 
and 17 times slower than the AT-OPT, CM-OPT and DPD-OPT respectively.

4.  Compared to the FFT, the CM-OPT has three main advantages. It allows: (i) 
pricing any required strikes (ii) avoiding interpolation biases and (iii) achiev-
ing a 10-4 accuracy with fewer integration points. As a result, the CM-OPT is 
both faster and more accurate than the FFT, thus rendering this method inef-
ficient. Following these figures, we decided not to pursue the speed compari-
son for the FFT-SA, which requires at least twice the FFT’s computing times 
and still cannot improve the CM-OPT accuracy.

To sum up, under the BSM dynamics the DPD-OPT is the most efficient when pric-
ing 100 or more options, whereas the CM-OPT is the best performer for pricing 
needs of 25 or less.
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3. The Bates Jump-diffusion Model

3.1 Model description

In 1996 Bates proposed a modelling framework which blends the Heston model 
with lognormally distributed price jumps. Under the risk-neutral measure, the Bates 
dynamics are given by
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where tS  is the price of the underlying asset at time t, r the risk free rate, tV  the 
variance at time t, V the long-term variance, a the variance mean-reversion speed, η 
the volatility of the variance process and 1 2,t tdW dW  are two Weiner processes with 
correlation ρ. In addition, tN  is a Poisson process with intensity λ, and tJ  are the 
jump sizes, which are lognormally distributed with an average jump size Jµ  and 
standard deviation Jv . Therefore, conditional on a jump occurring, the logarithm of 
the jump size is normally distributed with parameters
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The rationale for mixing stochastic volatility and jumps is based on empirical analy-
ses. Evidence show that volatility may change drastically over time and that asset 
prices can experience price jumps. As a result, observed returns as well as market 
expectations are typically characterized by distributions that exhibit substantial 
asymmetries and fat-tails, particularly in the short-term (Cont, 2001). Furthermore, 
empirical studies generally support the main features of the Heston model –mean-
reverting volatility and correlated volatility and asset shocks–, concluding that Hes-
ton dynamics provide a good fit to the prices of long-term options. Bakshi, Cao, and 
Chen (1997) and Crisostomo (2014) among others, validate this claim.

However, the diffusive behavior of the Heston model struggles to generate the 
asymmetric and leptokurtic distributions that are routinely implied by short-term 
options (see, for example Jones, 2003 or Sepp, 2003). To address this problem, the 
Bates model introduces a lognormal jump component which complements the Hes-
ton dynamics. As explained in Carr and Wu (2003), lognormal jumps can signifi-
cantly contribute to explaining the price of short-term options, but their smile ef-
fects flatten out quickly in longer time periods. Consequently, by combining 
stochastic volatility and lognormal jumps, the Bates model offers a versatile model-
ling scheme that can be used to accommodate both the short and the long end of the 
volatility surface.
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3.2 Bates characteristic function

Since the lognormal jumps are statistically independent from the Heston dynamics, the 
Bates characteristic function can be obtained by multiplying its individual components

 ln( ) ln( ) ln( )( ) ( ) . ( )
t t t

Bates Heston Jump
S S Sw w wψ ψ ψ=  (3.3)

For the Heston model, we follow the formulation in Gatheral (2006), which is free 
of the complex logarithm problem mentioned in section 2 (Lord and Kahl, 2010). 
For the lognormal jump, we use the derivation in Schoutens, Simons, and Tistaert 
(2004). The corresponding characteristic functions, expressed in compact form, are 
given by
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multiplying these and rearranging terms yields
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In particular, ( , )C t w V  and 0( , )D t w V  come from the Heston model, ( , )J t w  is a 
jump-specific component, while 

( )
0ln( )Jr tiw S e λ µ−

 accounts for the combined risk-
neutral drift.

3.3 Numerical results

3.3.1 Pricing accuracy in the Bates model

Our parameter set is taken from Duffie, Pan, and Singleton (2000): 0S = 100, 0V = 
0.008836, V = 0.014, a= 3.99, η= 0.27, r= 0.0319, ρ= -0.79, λ= 0.11, Jµ = -0.12 and Jv

= 0.15. The accuracy is evaluated at three strikes K= [60, 100, 140] and two tenors T
= [0.1, 1]. Due to the jump component, the Bates characteristic function exhibits fat-
ter tails than the BSM model, thus increasing truncation errors. Specifically, to 
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achieve a 10-10 accuracy, the integration range needs to be expanded to w = (0, 500] 
in most option configurations. Working in this domain, reference values are ob-
tained through the concurrent prices of the AT-OPT and the CM-OPT, integrating 
with 106 points. Our reference values reproduce the numerical results in Broadie 
and Kaya (2006) which considers the same parameter set and an expiry T= 5. Table 
3 shows the convergency for all options.

Bates pricing results for different implementations and grid sizes.  
Shaded areas indicate an accuracy of 10-10  TABLE 3

0.1T = 1T =

Method N 60K = 100K = 140K = 60K = 100K = 140K =

DPD /

DPD-OPT

16 120.388979560 1.5993860470 41.565546998 141.124118123 9.8443801278 46.170596585

64 40.1935961577 1.4818199384 0.0142396119 42.0421746717 6.7681519218 0.4588922289

128 40.1913715042 1.4817911118 0.0000689118 41.9030506537 6.7577771807 0.0059976446

256 40.1913715007 1.4817911118 0.0000688879 41.9030506459 6.7577754525 0.0058803882

512 40.1913715000 1.4817911118 0.0000688882 41.9030506459 6.7577754525 0.0058803882

1024 40.1913714998 1.4817911118 0.0000688883 41.9030506459 6.7577754525 0.0058803882

4096 40.1913714998 1.4817911118 0.0000688883 41.9030506459 6.7577754525 0.0058803882

AT-OPT

16 -379. 72556331 -447. 5135611 -431.4957298 -372.55076003 -441.42435148 -431.1683858

64 -40.779258363 -79.488914563 -80.96927475 -39.062068273 -74.211437357 -80.89549137

128 15.1618983729 -23.547682032 -25.02940426 16.8735775090 -18.271697518 -25.02358118

512 40.0305088361 1.3209284304 -0.160793800 41.7421879719 6.5969127785 -0.154982285

1024 40.1911135720 1.4815331663 -0.000189064 41.9027927078 6.7575175143 0.0056224500

2048 40.1913715094 1.4817911037 0.0000688734 41.9030506452 6.7577754518 0.0058803875

4096 40.1913715101 1.4817911043 0.0000688740 41.9030506459 6.7577754525 0.0058803882

FFT

16 124.980745155 103.62458491 89.765405818 134.987904869 113.29334262 97.080477335

64 57.5350496338 21.632547426 15.246969250 59.7231156346 27.255657862 15.746027439

128 45.8369819055 6.6448119788 4.6790510018 47.5693863707 11.955043669 4.7328337892

512 40.1910533056 1.4830775307 0.0013549399 41.9029321867 6.7590619372 0.0071709441

1024 40.1897660192 1.4817911209 0.0000688774 41.9016448724 6.7577754691 0.0058810474

2048 40.1897660026 1.4817911043 0.0000688606 41.9016448557 6.7577754525 0.0058810307

4096 40,1897660026 1.4817911043 0,0000688606 41.9016448557 6.7577754525 0.0058810307

FFT-SA /

CM-OPT

16 256.0930361179 103.62458491 58.140360108 276.812732631 113.293342621 62.813272340

64 65.2465904830 21.632547426 15.247231379 67.2167401727 27.2556578616 15.746232159

128 45.8384232224 6.6448119788 4.6790589109 47.5706507670 11.9550436695 4.7328168403

512 40.1926587616 1.4830775307 0.0013544753 41.9043379324 6.7590619372 0.0071660711

1024 40.1913715268 1.4817911209 0.0000688906 41.9030506625 6.7577754691 0.0058804048

2048 40.1913715101 1.4817911043 0.0000688740 41.9030506459 6.7577754525 0.0058803882

4096 40.1913715101 1.4817911043 0.0000688740 41.9030506459 6.7577754525 0.0058803882

Ref. value 40.1913715101 1.4817911043 0.0000688740 41.9030506459 6.7577754525 0.0058803882
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As Table 3 shows, most pricing choices converge to the Bates reference values with 
two exceptions: (i) the short-term options in the DPD and DPD-OPT and (ii) the OTM 
and ITM options in the FFT. In particular:

1.  In the DPD and the DPD-OPT full convergence is achieved for the options at T
= 1 with an integration size of 256 points (0.51 points per unit of w). Converse-
ly, increasing the sampling frequencies does not result in full accuracy for the 
options at T= 0.1. Since the mispricings do not taper off as N  is increased, we 
next consider possible truncation errors. Specifically, the observed biases pro-
gressively diminish by expanding the integration domain, and full conver-
gence is achieved with an upper limit of w = 649. These results highlight the 
higher truncation error of the DPD integrands while exposing the lower decay 
of the Bates characteristic function in short expiries, a finding that is consist-
ent with Lee (2004).

2.  For the AT-OPT, 4096 sampling points are required to obtain an accuracy of 
10-10. Therefore, no truncation errors are observed in the range w = (0, 500], but 
discretization biases are notably higher than in other methods. First, a sam-
pling density of 8.19 points per unit of w is required to achieve full accuracy, 
the highest of all methods. Second, regardless of maturity and strike, the AT-
OPT significantly underprices all options with small integration grids, produc-
ing negative prices for sampling sizes as high as N= 1024 (2.05 points per unit 
of w).

3.  Interpolation errors prevent a single FFT run from attaining full convergence 
in the OTM and ITM strikes. Conversely, for the two ATM strikes –both cov-
ered in the FFT grid–, a 10-10 accuracy is obtained when N  = 2048 points.

4.  Finally, the CM-OPT and FFT-SA achieve full accuracy in all options with 2048 
sampling points. Therefore, these methods are free of truncation errors for an 
upper integration limit w = 500 and a sampling density of 4.10 points per w is 
required to deliver an accuracy of 10-10.

In summary, except for small biases of order O(10-3) or lower, no major convergence 
problems are observed in the Bates model, and high precision values can be ob-
tained in the domain w = (0, 500] integrating with sampling densities from 0.51 to 
8.19 points. However, these results highlight the increased complexity of the Bates 
model compared to the BSM dynamics, which entails (i) fatter tails due to a slower 
decaying characteristic function, thus increasing truncation errors and (ii) a less 
smooth probabilistic distribution, increasing sampling errors.

3.3.2 Computational speed in the Bates model

To evaluate the CPU speed, we first obtain the w-ranges required for full conver-
gence and the number of sampling points that deliver a 10-4 accuracy. As expected, 
the higher integration domains and sampling densities impact the required number 
of sampling points. Overall, computational times under the Bates model are, on av-
erage, 5 times higher than in the BSM framework. Table 4 shows the CPU times, 
obtained by averaging the waiting times in 100 independent runs.
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CPU times required to achieve a 10-4 accuracy in the Bates model [milliseconds] TABLE 4

N. of options priced

Method W-range Minimum N 1 10 25 100 500 2500

DPD (0, 649]  176  0.49055  4.92784 12.34723 49.5285 246.35524 1231.8061

DPD-OPT (0, 649]  176  0.49055  0.69773  0.82721  1.81093   5.21412  35.49049

AT-OPT (0, 478] 1091  1.39819  2.32650  2.79309  4.99878  24.98206 129.30169

FFT (0, 470] 1024 24.59742 24.59742 24.59742 24.59742  24.59742 303.61574

CM-OPT (0, 470]  622  0.33039  0.55383  1.07258  2.41625  14.33041 77.89331

1.  Although both require the highest w-range, the DPD and DPD-OPT only need 
176 sampling points to achieve a 10-4 accuracy, the lowest of all methods. CPU 
times increase nearly linearly without optimization, but the use of strike vec-
torization completely reverses the picture, making the DPD-OPT the fastest 
method for pricing needs of 25 options or more.

2.  The AT-OPT requires 1091 points to deliver a 10-4 accuracy, the highest of all 
methods. However, vectorization clearly pays off in terms of speed: despite its 
lower sampling efficiency, the AT-OPT is faster than the FFT and the DPD.

3.  Both the FFT and the CM-OPT minimize truncation errors. Leaving interpola-
tion biases aside, the FFT requires integrating with N= 1024 points to achieve 
the target accuracy. As a result, the FFT always computes a minimum of 1024 
options, rendering this method inefficient for low pricing requirements. Al-
though its performance improves with the number of options, the FFT is still 
slower than any strike-optimized method: on average, the FFT is 8, 24 and 26 
times slower than the AT-OPT, CM-OPT and DPD-OPT, respectively.

4.  The CM-OPT outperforms the FFT, delivering a 10-4 accuracy with just 622 
sampling points. Although they are based on the same approach, the CM-OPT’s 
flexibility allows pricing any required strikes and avoids interpolation biases, 
thus improving both the speed and accuracy of the FFT. Specifically, the CM-
OPT stands out as the fastest alternative for pricing needs of 10 options and 
lower.

Summing up, despite exhibiting higher computation times, the relative speed com-
parisons are similar to those of the BSM model: the DPD-OPT is the most efficient 
method when pricing a high number of options whereas the CM-OPT is the best 
performer for low to modest amounts. These results demonstrate the greater effi-
ciency of the strike-vectorized methods compared to the FFT and the unoptimized 
DPD.
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4. The Asymmetric Variance Gamma

4.1 Model description

The Variance Gamma model was introduced by Madan and Seneta (1990). However, 
it is its asymmetric version in Madan, Carr, and Chang (1998) which has achieved 
the greatest acceptance. The AVG is a purely discontinuous process where the un-
derlying asset evolves through a combination of many small jumps and a limited 
number of big jumps. Under the risk-neutral measure, the AVG dynamics are given 
by:
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where ( ; )G t v  is a Gamma distribution with mean t and variance vt, and tW  is a 
Weiner process N(0,1). Besides the risk free rate r, the model has three free param-
eters: 0σ > , 0v >  and θ . In broad terms, σ  governs the underlying asset volatility, 

θ dictates the sign of the skewness, and v provides control over the kurtosis. How-
ever, except for simplifying cases4, it is the particular combination of these three 
parameters which jointly determines the higher moments of the AVG distribution. 
We refer to Fiorani (2004) for a detailed statistical characterization.

Among jump models, the AVG presents two advantages. First, the AVG offers one 
the most parsimonious approaches that can consistently price options with differ-
ent moneyness and maturities. Second, several empirical studies have shown that 
the AVG dynamics provide a very good fit to the observed equity returns; see, for 
instance, Rebonato (2004) or Göncü, Karahan, and Kuzubaş (2016).

4 For instance, when θ  = 0 the AVG distribution is symmetric, and v alone determines the excess kurtosis, 

which is equal to 3(1 )v+ .
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4.2 Characteristic function of the AVG model

The AVG model exhibits a closed-form solution for the valuation of European op-
tions. However, its numerical implementation requires working with Bessel func-
tions of the second type and hypergeometric functions, making it complex and nu-
merically unstable. See, for instance, Matsuda (2004).

Alternatively, the characteristic function of the AVG model is simply given by
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and can be directly used to calculate option prices through the Fourier methods 
presented in Section 2. However, some popular choices, including the FFT, can blow 
up for certain AVG parameter values, as reported by Itkin (2010). The next section 
investigates these claims.

4.3 Numerical results

4.3.1 Pricing accuracy in the AVG model

We analyze three different parameter regions.

Parameters based upon Madan, Carr, and Chang (1998)

For our first pricing test we employ the parameters 0S = 100, σ= 0.12136, v= 0.3, θ= 
-0.1436, r = 0.1. We consider three strikes K = [60, 101, 140] and two tenors T= [0.1, 
1]. Despite its simple mathematical form, the slow hyperbolic decay of the AVG 
characteristic function complicates its practical implementation. Specifically, to ob-
tain an accuracy of 10-10 across most pricing variants, the required integration do-
main stands at w = (0, 500] for the options at T= 1, but it explodes to w= (0, 60000] 
for those at T=0.1. Working through these domains, reference values can be ob-
tained with the concurrent prices of the CM-OPT and AT-OPT. This methodology 
reproduces the AVG prices in Ribeiro and Webber (2004). Furthermore, it also re-
produces the related example in Hirsa (2012), for which Lewis (2013) reports a high 
accuracy value of 11.3700278104. Table 5 shows the convergency for all options.
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AVG pricing results for a parameter set based on Madan, Carr, and Chang (1998).  
Shaded areas indicate an accuracy of 10-10. Integration performed  
over w = [0, 500] for T  = 1 and w = (0, 60000] for T  = 0.1  TABLE 5

0.1T = 1T =

Method N 60K = 101K = 140K = 60K = 101K = 140K =

DPD /

DPD-OPT

64 3197.76162270 29.529241721 1895.8914932 49.1153370260 10.9847710563 0.2828767412

128 1607.65046065 14.771010245 939.47444626 45.7164396703 10.9815616823 0.1019906756

256 812.251435965 7.3699053393 458.02998666 45.7164396686 10.9815614276 0.1019706457

4096 79.9792045063 1.4022900624 2.0177043314 45.7164396686 10.9815614276 0.1019706457

32768 40.5972174428 1.3938413039 0.0000033815 45.7164396686 10.9815614276 0.1019706457

131072 40.5972172862 1.3938413038 0.0000033082 45.7164396686 10.9815614276 0.1019706457

524288 40.5972172766 1.3938413037 0.0000033036 45.7164396686 10.9815614276 0.1019706457

AT-OPT

64 -13400.437512 -14855.745639 -13877.853867 -35.1355089448 -69.9887207229 -80.843471846

512 -1613.6021231 -1813.2088139 -1707.9279004 45.5555769945 10.8206987535 -0.0588920283

2048 -350.29134880 -416.62945631 -403.05433836 45.7164396679 10.9815614269 0.1019706449

4096 -140.23509785 -185.30543391 -186.40540438 45.7164396686 10.9815614276 0.1019706457

32768 37.2551588597 -1.9482165141 -3.3420543348 45.7164396686 10.9815614276 0.1019706457

262144 40.5972193354 1.3938439615 0.0000061408 45.7164396686 10.9815614276 0.1019706457

524288 40.5972193355 1.3938439616 0.0000061410 45.7164396686 10.9815614276 0.1019706457

FFT

64 7747.721961182 3114.40894147 1758.79256655 72,3022003954 32.1522733400 16,9592069813

512 968.3640798850 389.314034377 219.828322682 45,5660131979 10.9828480255 0,1063975932

1024 483.4617873522 194.478580870 109.782124358 45,5647258461 10.9815614442 0,1051087216

2048 243.7658095435 96.542232909 55.3220233580 45,5647258295 10.9815614276 0,1051087049

32768 40.83971468629 1.6331043100 0.23618661120 45,5647258295 10.9815614276 0,1051087049

131072 40.59721650427 1.3938439653 0.00000614471 45,5647258295 10.9815614276 0,1051087049

262144 40.59721650054 1.3938439616 0.00000614100 45,5647258295 10.9815614276 0,1051087049

FFT-SA /

CM-OPT

64 7747.72161857 3114.40894147 1758.79248754 72.5340534309 32.1522733400 16.9354162770

512 968.205950852 389.314034377 219.828322588 45.7177270342 10.9828480255 0.1032565134

1024 483.383990426 194.478580870 109.782124231 45.7164396851 10.9815614442 0.1019706623

2048 243.765827548 96.542232909 55.322027310 45.7164396686 10.9815614276 0.1019706457

32768 40.8397175049 1.6331043100 0.2361866110 45.7164396686 10.9815614276 0.1019706457

131072 40.5972193392 1.3938439653 0.0000061447 45.7164396686 10.9815614276 0.1019706457

262144 40.5972193355 1.3938439616 0.0000061410 45.7164396686 10.9815614276 0.1019706457

Ref. value 40.5972193355 1.3938439616 0.0000061410 45.7164396686 10.9815614276 0.1019706457

For the options at T= 1, all methods deliver full convergence except for the usual 

FFT biases. In contrast, for those at T= 0.1, the DPD and DPD-OPT also fail to pro-

vide full convergence:

1.  The DPD and DPD-OPT require 256 sampling points to deliver a 10-10 accuracy 

in the T= 1 options (0.51 points per unit of w). Conversely, an upper limit w= 

60000 does not provide full accuracy for the options at T= 0.1. The mispricings 

can be attributed to the higher truncation error of the DPD and DPD-OPT com-

pared to other methods. Specifically, the DPD integration limit should be fur-
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ther increased by a factor of 3835 to eliminate the remaining O(10-6) biases, 
evidencing a remarkably slow decay.

2.  The AT-OPT achieves an accuracy of 10 decimal places for all strikes and ma-
turities. However, it requires higher sampling densities than other implemen-
tations: in order to reach full convergence, the AT-OPT requires up to 219 sam-
pling points (8.74 points per unit of w) for the T= 0.1 options, the highest of 
all methods.

3.  The FFT achieves full convergence for the two ATM strikes. However, it suf-
fers from interpolation biases in ITM and OTM strikes6. The required sam-
pling densities range from 4.10 to 4.37 points per w.

4.  Finally, when all the options are specifically evaluated, both the FFT-SA and 
CM-OPT attain full accuracy for all configurations. The integration sizes are 
equivalent to those observed in the FFT.

Overall, after accounting for the expanded T= 0.1 integration domain, all variants 
produce accurate prices for the parameter set in Madan, Carr, and Chang (1998). 
However, the required sampling densities are notably different, ranging from 0.51 
to 8.74 points per w.

Parameters based upon Itkin (2010): Analysis of two problematic cases

For our second pricing test we consider a parametrization 0S = 100, σ= 1, θ= 2, v= 0.5 
and r= 0.02. As in previous cases, we evaluate the accuracy at three strikes K = [60, 
90, 140] and two tenors T= [0.1, 1]. Convergency problems surface immediately 
when trying to calculate the reference values. Despite substantially increasing the 
integration domain and sampling densities, we were unable to obtain concurrent 
AVG prices for any two Fourier-pricing methods. Furthermore, a simple inspection 
reveals that most pricing choices completely blow up under this parameter set. In 
particular, except for the AT-OPT, all methods produce negative call prices or unfea-
sible option values.

The problem, according to Itkin (2010), can be traced down to the inequality con-
straint

 
21

2v
σ

θ> +  (4.5)

which must be respected in order to obtain a valid risk-neutral measure. However, it 
is remarkable that, despite being in a region where (4.5) is not obeyed, the AT-OPT 
still delivers apparently feasible option prices. In contrast to other methods, the AT-
OPT produces call values that are: (i) within reasonable positive bounds, (ii) mono-
tonically increasing with time and (iii) monotonically decreasing across strikes. Ta-
ble 6 shows the results7.

5 Up to w = 2.2*107.

6 The FFT strike grid is centered on K= 101, thus exactly covering the near-ATM strike.

7 The FFT strike grid is centered on K= 90, thus exactly covering this strike.
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AVG pricing results for a parameter set where inequality (4.5) is not respected.  
Integration performed over w = (0, 1200000]  TABLE 6

0.1T = 1T =

Method N 60K = 90K = 140K = 60K = 90K = 140K =

DPD /

DPD-OPT

215 5.5431*1022 5.5431*1022 5.5431*1022 -6581.25996406 -6582.37082991 -6326.12578292

218 6.9289*1021 6.9289*1021 6.9289*1021 -804.637710681 -817.641676505 -807.052891605

220 1.7322*1021 1.7322*1021 1.7322*1021 -185.709482456 -199.985228368 -215.714705023

222 4.3306*1020 4.3306*1020 4.3306*1020 -31.0958006456 -44.8385968717 -65.5425150565

223 2.1653*1020 2.1653*1020 2.1653*1020 -12.3634864099 -25.5655486355 -46.0987178248

224 1.0826*1020 1.0826*1020 1.0826*1020 -10.5629165519 -23.6928307073 -44.2580733896

AT-OPT

215 -430.96286656 -484.17907474 -448.91667837 -189.31520068 -125.494168396 102.619046972

218 7.3494999555 -12.466544758 -29.401466540 38.1053847408 33.2179061890 40.2902121315

220 48.3693519584 31.2863798015 11.9329937296 62.4727400386 50.2258743878 33.6188355799

222 50.9420851731 34.0217613501 14.4889004287 68.0466014576 54.2138578360 32.4154270823

223 51.0312183887 34.1176540978 14.5742753420 68.4902856913 54.5295221850 32.3142801153

224 51.0532777316 34.1413947115 14.5953765503 68.6036096897 54.6090386494 32.2846763861

FFT

215 48.5975777114 23.903138043 11.032066282 -0.2767*10-16 -0.1361*10-16 -0.0628*10-16

218 6.22093343383 3.0458963513 1.3295708551 0.0608*10-17 0.6202*10-17 -0.4205*10-17

220 2.16046286880 1.7659137695 0.8803717982 0.2908*10-6 0.1149*10-6 0.0263*10-6

222 -0.0914866217 0.7623279882 0.4766541273 -0.2880*10-4 -0.1407*10-4 -0.0634*10-4

223 -0.5460290452 0.5430298406 0.3776074074 -0.4065*10-4 -0.2044*10-4 -0.0956*10-4

224 -0.7810652966 0.4284830228 0.3252734458 -0.4405*10-4 -0.2226*10-4 -0.1048*10-4

FFT-SA /

CM-OPT

215 48.597577715 23.903138043 11.032025288 -0.2767*10-16 -0.1361*10-16 -0.0628*10-16

218 6.2209334343 3.0458963513 1.3295658553 0.0608*10-17 0.6202*10-17 -0.4205*10-17

220 2.1604628689 1.7659137695 0.8803684141 0.2908*10-6 0.1149*10-6 0.0263*10-6

222 -0.091486621 0.7623279882 0.4766525517 -0.2880*10-4 -0.1407*10-4 -0.0634*10-4

223 -0.546029045 0.5430298406 0.3776062103 -0.4065*10-4 -0.2044*10-4 -0.0956*10-4

224 -0.781065296 0.4284830228 0.3252724457 -0.4405*10-4 -0.2226*10-4 -0.1048*10-4

Finally, we explore a third parametrization where 0S = 100, σ= 1, θ= 1.5, v= 0.2 and 

r = 0.02, considering again the same strikes and maturities. This choice includes a 

problematic case reported in Itkin (2010), but in a region where inequality (4.5) is 

respected. In this region, AVG reference values can be obtained through the concur-

rent prices of the AT-OPT and DPD-OPT. Again, truncation biases are highest in the 

DPD-OPT and for the option at T= 0.1, which requires a range of w = (0, 1200000) 

to achieve an accuracy of 10-10. Conversely, the AT-OPT delivers the same accuracy 

with a domain 17 times lower (i.e. with an upper limit w = 70000).

An outstanding result is the failure of both the FFT and the CM-OPT in this region. 

The pricing failure arises due to a singularity that appears after substituting the 

AVG characteristic function into Carr-Madan’s integrand. This substitution gener-

ates a divergence that is not addressed by the ln( )Keα  factor (Itkin, 2010). The FRFT 
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in Chourdakis (2005), based on the same pricing equation, also fails to control this 
divergence.

Drilling down, we find that the blow-ups are connected to the specific values of the 
FFT dampening parameter α. As originally reported by Carr and Madan (1999), in 
order to keep the AVG characteristic function finite, the choice of α should respect

 
2

4 2 2
2 1
v

θ θ
α

σ σ σ
< + − −  (4.6)

thus requiring an α<1 in the third AVG parametrization. As a result, our initial 
choice α= 1.75 fails to provide reasonable prices. However, simply employing an α 
within the (0, 1) feasibility range can also generate substantial mispricings. In our 
tests, in order to achieve full accuracy, α must be specifically chosen between 0.35 
and 0.55, thus further restricting the optimal α values. The pricing errors increase 
when using an α outside this optimal range and, even within the feasibility region, 
both the FFT and the CM-OPT completely blow up as α approaches either 0 or 1. In 
contrast, as Table 7 shows, neither the DPD nor the AT-OPT suffer this problem.
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AVG pricing results for a parameter set where inequality (4.5) is respected. Shaded  
areas indicate an accuracy of 10-10. Integration performed over w = (0, 1200000]  TABLE 7

0.1T = 1T =

Method N 60K = 90K = 140K = 60K = 90K = 140K =

DPD /

DPD-OPT

215 270.683053581 160.312855480 237.86695077 1449.21661285 1496.35893184 1833.0259535

218 54.0800276206 28.2704404214 15.914270370 199.206760987 192.219586279 212.743974011

220 40.7020635729 20.1016563822 10.7855954314 74.6050157872 65.6279579754 56.2478146759

222 40.5900314502 20.0293202567 10.7405868468 66.0965449591 58.9490639706 51.1509829305

223 40.5900314461 20.0293202541 10.7405868451 66.0965123856 58.9490408593 51.1509670470

224 40.5900314461 20.0293202541 10.7405868451 66.0965123856 58.9490408593 51.1509670470

AT-OPT

215 -421.09668122 -469.47887013 -425.90148223 -92.808830987 19.2653861422 3.27800576253

218 8.11345483450 -13.012414180 -22.611830285 50.1646610093 51.3260989767 68.4322474755

220 33.7963800774 13.2095933195 3.9033996984 60.9405228006 54.2608416231 49.7045688115

222 40.5900314172 20.0293202251 10.7405868161 66.0965123565 58.9490408303 51.1509670179

223 40.5900314461 20.0293202541 10.7405868451 66.0965123856 58.9490408593 51.1509670470

224 40.5900314461 20.0293202541 10.7405868451 66.0965123856 58.9490408593 51.1509670470

FFT

α=1.75

215 0,07843707418 -0.016599681 0,0151481402 -4,1151238493 -2.0240511287 -0,9341646344

218 3,59480556391 -1.323163272 -0,2603100721 -0,5143834782 -0.2530040694 -0,1167728173

220 12,9433291575 2.9380067936 0,5859217681 -0,1202676882 -0.0585836307 -0,0272927868

222 14,7504640457 4.1059080343 1,2786976895 -0,0009051229 -0.0005506626 -0,3196390234

223 14,8275732557 4.1548246008 1,3068472175 0.1568*10-8 -0.1004*10-8 -0.0617*10-8

224 14,8466387257 4.1669054042 1,3137851814 -0,2209*10-17 0.3313*10-17 0.1453*10-17

FFT-SA /

CM-OPT

α=1.75

215 0.07843835368 -0.016599681 0.0151488067 -4.1151074745 -2.0240511287 -0.9341611630

218 3.59478391991 -1.323163272 -0.260304099 -0.5143814312 -0.2530040694 -0.1167723833

220 12.9432751140 2.9380067936 0.5859169265 -0.1202671977 -0.0585836307 -0.0272926881

222 14.7504058715 4.1059080343 1.2786910516 -0.0009051203 -0.0005506626 -0.3196381856

223 14.8275148996 4.1548246008 1.3068405019 -0.1568*10-8 -0.1004*10-8 -0.0617*10-8

224 14.8465803245 4.1669054042 1.3137784466 -0.4969*10-17 0.3313*10-17 0.1657*10-17

FFT

α=0.45

215 1304.40320341 1086.77815136 890.882030352 4973.89374494 4144.33632509 3397.08896528

218 164.799488909 133.209481719 111.913110884 621.736726651 518.041782559 424.636263523

220 50.4646458353 29.6599628754 20.1926560221 156.497151924 130.543150369 106.939721645

222 40.5953058620 20.0344523771 10.7457395671 66.4468678658 59.1987747008 51.3240149513

223 40.5901605037 20.0293205149 10.7406172558 66.0965743593 58.9490564174 51.1510145005

224 40.5901602429 20.0293202541 10.7406169951 66.0965519079 58.9490408593 51.1510040436

FFT-SA /

CM-OPT

α=0.45

215 1304.40186937 20.0293202541 890.881180372 4973.88865557 4144.33632509 3397.08571924

218 164.799293679 133.209481719 111.913018810 621.736090478 518.041782559 424.635857770

220 50.4645153736 29.6599628754 20.1926251636 156.496993453 130.543150369 106.939618656

222 40.5951770652 20.0344523771 10.7457094171 66.4468276776 59.1987747008 51.3239776506

223 40.5900317067 20.0293205149 10.7405871058 66.0965348370 58.9490564174 51.1509775039

224 40.5900314461 20.0293202541 10.7405868451 66.0965123856 58.9490408593 51.1509670470

Ref. value 40.5900314461 20.0293202541 10.7405868451 66.0965123856 58.9490408593 51.1509670470
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Overall, our findings corroborate the problems described in Itkin (2010), extending 
the problematic cases to several strikes in addition to maturities. Furthermore, we 
show that the AT-OPT is the only method that doesn’t blow up in any AVG problem-
atic region, a result that to the best of our knowledge has not been reported before.

4.3.2 Computational speed in the AVG model

For the speed test we consider the Madan, Carr, and Chang (1998) parametrization, 
where all methods are blow-up free and can thus be compared on an equal basis. 
Since truncation errors are remarkably different depending on the option’s expiry, 
we report the comparison for both T= 1 and T= 0.1. Tables 8 and 9 show the results.

CPU times required to achieve a 10-4 accuracy in the AVG model  
for T= 1 [milliseconds] TABLE 8 

N. of options priced

Method W-range Minimum N 1 10 25 100 500 2500

DPD (0, 462] 114 0.25333 2.53871 6.32706 25.31646 126.30225 632.12565

DPD-OPT (0, 462] 114 0.25333 0.37439 0.49019  1.07109   3.34189  21.89656

AT-OPT (0, 334] 773 0.47363 0.80103 1.30047  2.89957  15.84225  90.30666

FFT (0, 295] 512 5.86752 5.86752 5.86752  5.86752   5.86752  320.7581

CM-OPT (0, 295] 388 0.22453 0.34399 0.86634  1.71727   8.69480  47.84920

For the T= 1 options, the speed comparisons are similar to those of the Bates model: 
the DPD-OPT is the fastest method when pricing a high number of options, while 
the CM-OPT performs best for 10 or fewer options. In contrast, the FFT and the 
plain DPD are the slowest alternatives. Specifically, the AT-OPT, CM-OPT and DPD-
OPT are, on average 5, 10 and 12 times faster than the FFT. These results character-
ize the CPU effort in an AVG region where no blow-ups or exploding truncation 
errors are observed.

Conversely, for the T= 0.1 options, the slow AVG hyperbolic decay significantly 
impacts the CPU speed. For the comparisons, due to exploding truncation errors, we 
first compute the integration range that delivers a 10-6 accuracy (instead of the usual 
10-10), and then obtain the number of sampling points that achieve an accuracy of 
10-4.
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CPU times required to achieve a 10-4 accuracy in the AVG model  
for T= 0.1 [milliseconds] TABLE 9

N. of options priced

Method W-range Minimum N 1 10 25 100 500 2500

DPD (0, 79980] 14889   4.25683  45.74770 115.07808 461.01605 2304.7316 11533.798

DPD-OPT (0, 79980] 14889   4.25683   13.2001  30.55344 126.34450 631.73191 3130.0113

AT-OPT (0, 6997] 16041   5.56649  11.12723  19.95001  71.65330 347.83121 1785.9742

FFT (0, 6536] 16384 5223.4364 5223.4364 5223.4364 5223.4364 5223.4364 5223.4364

CM-OPT (0, 6536]  8625   1.57107   3.66537   9.42893  39.63055 205.72119 1024.4328

As Table 9 shows, due to the substantially expanded w-ranges, the computational 
times for the T= 0.1 options are, on average: (i) 59 times higher than in the T= 1 
expiries, (ii) 40 times higher than in the Bates model and (iii) roughly 200 times 
higher than in the BSM model. When truncation errors play a prominent role, the 
faster decay of the CM-OPT, combined with its moderate sampling efficiency, allow 
this method to minimize the number of sampling points. In contrast, the sluggish 
decay of the DPD/DPD-OPT and the low sampling efficiency of the AT-OPT result in 
notably higher integration sizes. Therefore, the CM-OPT is the fastest method in all 
cases, whereas the AT-OPT and DPD-OPT rank as second best. These results demon-
strate again the significantly higher CPU efficiency of strike vectorizations com-
pared to classical alternatives like the FFT or the plain DPD.
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5. Conclusions

This paper analyses the accuracy and speed of several Fourier-based implementa-
tion choices. In terms of pricing biases, we show that truncation errors increase as 
we move from the BSM to the Bates model and further intensify under the AVG 
dynamics. Discretization errors also increase when discontinuous jumps are consid-
ered, but the rise is modest and remains alike in both jump models. Across different 
methods: (i) the DPD and DPD-OPT exhibit the highest sampling efficiency but also 
the slowest decay rate, (ii) the CM-OPT stands out for minimizing truncation errors 
and (iii) the AT-OPT suffers from the highest discretization errors.

We show that obtaining accurate option values can be particularly challenging in 
the AVG model. While all methods show good convergence under the BSM and 
Bates dynamics, high truncation errors significantly complicate the practical AVG 
implementation. Moreover, depending on the AVG parameters, specific Fourier im-
plementations may completely fail to provide reasonable option prices: both the 
FFT and the CM-OPT can blow up even in regions where inequality (4.5) is respect-
ed, whereas the DPD and DPD-OPT also fail when (4.5) is not obeyed. In contrast, 
the AT-OPT seems to work fine for any AVG parameter values.

Our speed analyses demonstrate the benefits of using strike vectorization compared 
to other choices. In our tests, computing option prices through the AT-OPT, CM-
OPT and DPD-OPT is up to 78, 90 and 239 times faster than in the FFT. Overall, the 
DPD-OPT is the fastest alternative when pricing a high number of options, whereas 
the CM-OPT performs best when only a few prices are required.

Finally, the comparison between the FFT and the CM-OPT deserves a special men-
tion. While both are based on the same pricing approach, the CM-OPT’s flexibility 
allows (i) pricing any required strikes, (ii) choosing any integration size and tech-
nique and (iii) avoiding interpolation biases. As a result, the CM-OPT is both faster 
and more accurate than the FFT, thus rendering this method inefficient. Based on 
our results, we see no reason to employ the FFT over the CM-OPT, but further anal-
ysis may be needed in order to confirm this hypothesis.
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