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Abstract

The financial sector faces different systemic events. The early recognition of these events is a key step to monitor 
and track possible financial crises. Three main questions arise related to systemic risk, and they deal with their 
quantification, their probability of occurrence and the role of main contributors. This paper proposes a method-
ology based on a reverse stress test exercise to shed light on these questions. Time series and cross-section infor-
mation regarding systemic risk are obtained. Further, we explore how these results of systemic assessment could 
change depending on key parameters in a Gaussian framework and, finally, a small empirical exercise is per-
formed.
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1 Introduction

The 2008 great financial crisis, the European sovereign debt crisis and the COVID-19 

crisis have brought about new challenges for the European Central Bank (ECB) pol-

icy concerning macroprudential supervision. The macroprudential oversight should 

prevent the financial sector from bringing about a breakdown of the economic sys-

tem (ECB, (2010a). According to the ECB (2010b), systemic risk can be defined as the 

risk of experiencing systemic events, which are financial failures likely to translate 

into adverse effects on welfare in the economy. There are plenty of features of the 

financial system that make financial sectors susceptible to these systemic risk sourc-

es, e.g. externalities through transmission channels, asymmetric information due to 

agency problems and powerful feedback and amplification mechanisms such as fire 

sales and herd behaviour.

In this article a methodology to build a systemic risk indicator is proposed that looks 

into tail events to compute their quantitative impact, their probability of occurrence 

and a set of institutions that could explain the overall losses when the distress event 

materialises. This approach takes into account the individual features of each insti-

tution and its systemic relevance to assess the quantitative impact of a systemic 

event. The tail dependence between the financial firms in the system provides the 

probability of occurrence. The difference between the marginal contribution of fi-

nancial firms to the aggregate losses in the system and their tail behaviour that 

could lead to those aggregate losses in an adverse scenario indicates the relative risk 

of each firm over the whole financial system. The properties of the proposed model 

are studied using a Gaussian model. Although the normality assumption is not ful-

filled in the real world, these results can be interpreted in terms of conditional nor-

mality, where a structural change in the parameters of the Gaussian model might 

explain the kurtosis presented in financial returns (Leon Li and Lin, 2004). The 

Gaussian model shows that the sign of this difference between the marginal contri-

bution and their tail behaviour is related to the relative volatility of the firm returns. 

Also, the Gaussian model shows that the higher the correlation between institutions 

is, the closer this difference is to zero, becoming a systemic risk reflected in an in-

crease of the overall losses and their probability. Weighting this difference by its 

systemic importance provides a ranking criterion where the institutions at the top 

are those which present a higher relative risk and characteristics that make them 

potentially systemic. Systemic relevance might have been computed in different 

ways, depending on the sector within the financial system, as they are exposed to 

different systemic events, e.g. market capitalisation and leverage ratio for banks, or 

liquidity ratios and assets under management for investment funds. This study also 

performs a small empirical exercise to compare different systemic risk measures 

in the context of investment funds for a sample of 99 Spanish investment funds for 

the period 2009-2020.
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This article contributes to several branches of the literature. First, it continues the 
study of comparison between measures of systemic risk, following Benoit et al. 
(2013), Kleinow et al. (2017) and Guntay and Kupiec (2014). There is a gap in this 
literature regarding the role of the proxy for the financial market employed to build 
systemic risk measures. This study looks, both in a Gaussian model and also in the 
empirical exercise, at the implications of the construction criterion of the financial 
system for the assessment of systemic risk. The standard deviation and the weight 
of the firms to build the proxy for the financial market could be as important as the 
correlation between firms.

Second, the proposed methodology is innovative in its implementation process, fol-
lowing the idea of a reverse stress test. Assuming that all the firms in the financial 
system are experiencing losses in an overall adverse scenario, i.e. the diversification 
benefits fade out, the aggregate losses are obtained as the sum of the weighted loss-
es of the firms. Then, the probability of occurrence of these aggregate losses can be 
quantified, transforming the multivariate probability framework of mutual depend-
ence across financial firms into a single probability space for the financial market. 
Finally, following the same core idea of a reverse stress test, the expected behaviour 
of each institution that could lead to this level of aggregate losses is obtained. A 
ranking is built comparing the expected performance of each institution to its tail 
behaviour and weighting this difference by its relative importance.

The remainder of this paper is structured as follows. Section 2 introduces the litera-
ture about systemic risk from an Expected Shortfall approach. Section 3 presents 
goals, formulas and interpretations of the different systemic risk measures. Section 4 
presents a toy financial model to study how rankings, probabilities and overall loss-
es can change depending on the parameter inputs under a Gaussian framework. 
Section 5 conducts an empirical exercise using real data from Spanish investment 
funds. Finally, section 6 concludes the article.
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2 Literature review

Trichet (2009) points out the need of high-frequency systemic risk measures due to 
the speed of the crisis spillovers. Several high-frequency measures have been pro-
posed based mainly on market data. Some market data based measures are the 
Marginal Expected Shortfall (MES) by Acharya et al. (2012), the Component Ex-
pected Shortfall (CES) by Banulescu and Dumitrescu (2015), the Delta Conditional 
Value-at-Risk (∆CoVaR) by Adrian and Brunnermeier (2016), and the Systemic RISK 
(SRISK) by Brownlees and Engle (2016). Each measure tries to put forward a certain 
feature of the systemic event.

For instance MES is the conditional return of the financial firm when the market as  
a whole is in distress, whereas CES is the absolute contribution of each firm to the 
financial market crisis. Although from a time-series perspective MES and CES are 
almost identical, in the cross-sectional series there is a significant difference due to 
the inclusion of a size factor in the CES. Benoit et al. (2013) and Benoit et al. (2017) 
point out similarities between MES ranking and ranking based on market β under 
Gaussian assumptions. Due to that, Guntay and Kupiec (2014) conclude that MES is 
a measure where systemic and systematic risk are mixed, given an unreliable and 
noisy view of systemic risk. Löffler and Raupach (2017) and Kleinow et al. (2017) 
support the same idea. This is why these authors advocate combining several sys-
temic risk measures to identify systemically important financial institution (SIFIs).

The Delta Conditional Value-at-Risk (ΔCoVaR) measures the change in the value-at-
risk of the financial market when the firm moves from normal to distress times. The 
original definition proposed by Adrian and Brunnermeier (2016) suffered from sev-
eral drawbacks among which the most important were the impossibility to perform 
backtesting on Conditional Value-at-Risk (CoVaR) and the counterintuitive fact that 
CoVaR is not a monotonically increasing function of the dependence between the 
firms and the financial system (Mainik and Schaanning, 2014; Zhang, 2015; Bernard 
et al., 2013). Girardi and Ergün (2013) propose a modification of CoVaR definition 
that deals with these issues. However, most of the articles concerning comparison 
between systemic risk measures as Benoit et al. (2017), Guntay and Kupiec (2014) or 
Löffler and Raupach (2017) use the original definition in spite of its problems. More-
over, CoVaR has some limitation given its nature, i.e. it does not satisfy the subaddi-
tive property (see Artzner et al., 1999; Acerbi and Tasche, 2002). This issue is solved 
when the value-at-risk dimension changes to an expected shortfall framework, i.e. 
building systemic risk measures based on Conditional Expected Shortfall (CoES). 
Delta Conditional Expected Shortfall (∆CoES) still cannot be aggregated, unlike CES 

or SRISK.

Finally, SRISK tries to assess the amount of capital needed by a firm in distress 
when the market is also in distress. For this purpose, Brownlees and Engle (2016) 
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combine market and accountant data taking into account the common exposure of 
the firms to the financial market, the size and the leverage of institutions. The fact 
of using accountant data may introduce a discrepancy problem because of the dif-
ferences between accounting systems. Moreover, the accountant data is scarce and 
only available at a low frequency. The sub-prime crisis has shown us that financial 
imbalances may come from off-balance sheet activities, adding an additional chal-
lenge to SRISK. Scott et al. (2016) claim that SRISK can be appropriate for measuring 
systemic risk in the banking sector where the accountant data and the market lever-
age ratio may convey information about different business lines, but not for assess-
ing systemic risk in other financial groups as the insurance sector. Salleo et al. (2016) 
find SRISK highly correlated with the leverage ratio, having doubts about the use of 
SRISK as a benchmark for supervisory stress tests.

Constâncio (2017) raises attention to the two main systemic risks stemming from 
the non-bank financial sector that have not been captured properly by stress tests 
and analytical tools for systemic risk, which have been built bearing the banking 
sector in mind.

Firstly, the increasing size and growth of the non-bank financial sector which can 
potentially amplify financial stability risks is to be noted. The Too-Big-To-Fail (TBTF) 
problem has played an important role during the 2008 financial crisis (Bernanke, 
2010), and the size has increased during the last two decades (Laeven et al., 2014). 
Rose and Wieladek (2012) have found that the bank size has been a key determinant 
for public bank interventions in the United Kingdom. Size is important because 
there are evidences that large institutions tend to engage more in risky business 
lines and be funded more with short- term debt, making them vulnerable to liquid-
ity constrains in case of crisis (Shleifer and Vishny, 2009; Boot and Ratnovski, 2012). 
Large banks also usually incur in moral hazard behaviour, taking excessive risk and 
having lower capital ratios due to the expectation of bailout (Farhi and Tirole, 2012).

Secondly, the procyclical nature of margin and haircut-setting practices may lead to 
the amplification of liquidity and market risk via fire sales in a distress scenario. 
Bernanke (2009) highlights the relevance of the Too-Connected-To-Fail (TCTF) prob-
lem to trigger out financial instabilities. International Monetary Fund et al. (2010) 
indicate that interconnectedness is, jointly with the size factor, an essential determi-
nant to identify SIFIs.
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3 Tools and measures for systemic risk using the 
market-based approach

The measures employed in the literature focus on the assessment of systemic risk 
and the identification of the SIFIs. This section provides the specific information 
that each measure tries to capture and its statistical definition. The set of systemic 
risk measures and their relationship are studied to provide a comprehensive frame-
work coming from the Expected Shortfall of the financial system.

Let us define the financial system return as
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the materialization of the hidden pitfalls in a crisis period. The Expected Shortfall of

the financial system is

ESm,t−1(α) = −Et−1 [rm,t|rm,t < V aRm(α)] . (2)

3.1 Marginal Expected Shortfall

The MES measure provides information about the mean losses of financial firm i

when a financial crisis occurs. This measure provides useful information concerning the

average behaviour of financial institutions on a certain scenario and their conditional

performance features.

MES measures the marginal contribution of an institution i to systemic risk

MESi,t(α) =
∂ESm,t(α)

∂wi,t−1

= −Et−1 [ri,t|rm,t < V aRm,t(α)] . (3)

Equation (3) can be rewritten as

MESi,t(α) = −
∫ ∞

−∞
ri,tfi,t(ri, t|rm,t < V aRm,t(α))dri,t, (4)

where fi,t(ri, t|rm,t < V aRm,t(α)) is the probability density function for firm i condi-

tioned to a scenario where the financial market is below its α100-th quantile.
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3.2 Component Expected Shortfall

The CES measure indicates the contribution of each firm to the system mean losses 

in distress, i.e.

 

3.2 Component Expected Shortfall

The CES measure indicates the contribution of each firm to the system mean losses in

distress, i.e.

CESi,t(α) = ωiMESi,t(α). (5)

There is a relationship between CES and the ES of the financial system given Equation

(3)

ESm,t(α) =
N∑
i=1

CESi,t︷ ︸︸ ︷
ωi,t−1 Et−1 (−ri,t|rm,t < V aR(α))︸ ︷︷ ︸

MESi,t

. (6)

Equation (6) points out two important advantages of CES over MES. First, CES

introduces a size factor in the MES formula dealing with the TBTF problem. Second,

Equation (6) shows that the ES of the financial system can be expressed as a sum of

CES. This means that CES can be aggregated, giving information about which would

be the joint contribution of a sub-set of institutions to the system losses in a financial

crisis.

However, CES does not show the dependence with the market scenario nor give enough

importance to tail features that could lead to a systemic event.

3.3 ∆ CoES

∆CoESm|i measure indicates the change in the Expected Shortfall of the financial

system when the financial firm i moves from normal times to a distress scenario, i.e.

∆CoESm|i,t(β) = CoESm|i,t(αs, β)− CoESm|i,t(αn, β) (7)
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needs can be fulfilled without spillover effects between sectors, but in a distress scenario

capital needs could lead to bankrupt and bailout processes, leading to a contagion event

from the firm i to the financial market. Therefore, CoES is an unsatisfactory measure

to assess the contagion because it lacks for a benchmark to measure the change in the

measurement of risk when a crisis occurs. Indeed, CoES and CoVaR may be enough to

capture the losses in a given scenario but not the loss changes when the conditioning

1There is no consensus about the definition of tranquil times for the conditioning event. The
definition employed in this article follows Ferreiro (2018). Chen and Khashanah (2014) employs the
unconditional ES measure and Girardi and Ergün (2013) uses a standard deviation range around
the mean value of the conditioning variable. However, the former definition does not capture the
relevance of a change in the conditioning variable from a normal period to a distress scenario for the
conditioned variable. On the other hand, the latter definition for a tranquil scenario is not fully defined
for non-Gaussian marginal distributions due to the need to use higher moments, e.g. skewness and
kurtosis.
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os for the firm i in Equation (7). Firm i faces a distress scenario where its returns are 

below its α-th quantile in the numerator of Equation (7), whereas in the denominator 
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the returns of firm i are around its median.1 Losses not considered in normal sce-
narios can trigger a systemic event because of the lack of liquidity, i.e. in a normal 
scenario capital needs can be fulfilled without spillover effects between sectors, but 
in a distress scenario capital needs could lead to bankruptcy and bailout processes, 
leading to a contagion event from the firm i to the financial market. Therefore, CoES 
is an unsatisfactory measure to assess the contagion because it lacks a benchmark to 
measure the change in the measurement of risk when a crisis occurs. Indeed, CoES 
and CoVaR may be enough to capture the losses in a given scenario but not the loss 
changes when the conditioning scenario moves. That is why Adrian and Brunner-
meier (2016) conceived ∆CoES as a difference of two CoES where the degree of dis-
tress was different.

3.4  New framework for assessing systemic risk coming from the 
relationship between systemic risk measures

Most systemic risk measures, such as MES or SRISK, define systemic risk as the as-
sessment of losses for financial institution i given a stress scenario for the financial 
system, with the exception of ∆CoESm|i which defines the systemic risk on the op-
posite way. The measure obtained by exchanging conditioned and conditioning 
variables in Equation (7) is a risk management tool similar to the stress test, useful 
for tracking financial firms performance in terms of systemic risk. Whereas ∆CoESm|i 
measures which financial institution contributes more to a financial crisis, 
∆CoESi|m measures which financial institution is more exposed to a contagion from 
the financial sector.

The MES can be expressed as the weighted sum of two sections, where one com-
ponent (CoESi|m) is focused on the tail behaviour of firm i, where sunken losses 
arise. Figure 1 shows the MES as the area on the left of VaRm,t(α), which is split in 
two sections weighted by their probability of occurrence given the distress sce-
nario for the financial market. The threshold that divides MES in two areas is the 
Conditional Value-at-Risk (CoVaRi|m). Losses higher than −CoVaRi|m would occur 
β100 out of a hundred times whereas losses would be lower (1 − β)100 out of a 
hundred times.

1 There is no consensus about the definition of tranquil times for the conditioning event. The definition 
employed in this article follows Ferreiro (2018). Chen and Khashanah (2014) employ the unconditional 
ES measure and Girardi and Ergün (2013) use a standard deviation range around the mean value of the 
conditioning variable. However, the former definition does not capture the relevance of a change in 
the conditioning variable from a normal period to a distress scenario for the conditioned variable. On the 
other hand, the latter definition for a tranquil scenario is not fully defined for non-Gaussian marginal 
distributions due to the need to use higher moments, e.g. skewness and kurtosis.
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β

. (9)

The interesting section of MESi,t is the one in which institution i is in distress, i.e.

CoESi|m,t(α, β)β. In fact, the ranking according MESi,t could be quite different from

the ranking following CoESi|m if there are hidden losses on the tail of distribution over-

looked when completed distribution is considered.

The link between CoESi|m and the ES of the financial system comes from Eq. (6)

and (9). Moving from a marginal dimension, i.e. MESi, to a conditional marginal

framework, i.e. CoESi|m, implies a focus not only on the mean response of firm i under

a extreme scenario for the financial system but on its tail response to this scenario.

Equation (6) can be rewritten in terms of Conditional Expected Shortfall as

ESm,t−1(α) =
N∑
i=1

Component CoES︷ ︸︸ ︷
ωi,t−1CoESi|m,t(α, β) β +

N∑
i=1

ωi,t−1Et−1

(
−ri,t|ri,t > CoV aRi|m,t(α, β)

)
(1− β), (10)

where the Component CoES is a decomposition of the Component Expected Shortfall

(CES) (See Banulescu and Dumitrescu 2015) where the focus is set on the conditional
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The link between CoESi|m and the ES of the financial system comes from Equations 
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framework, i.e. CoESi|m, implies a focus not only on the mean response of firm i un-
der an extreme scenario for the financial system but on its tail response to this sce-
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where the Component CoES is a decomposition of the Component Expected Shortfall 
(CES) (see Banulescu and Dumitrescu, 2015) where the focus is set on the condi-
tional tail losses instead of the conditional mean losses.

The sum of the Component CoES would be equal to the Expected Shortfall of the fi-
nancial system at a certain significance level. Under the assumption of conditional 
perfect dependence between institutions, i.e. firms present perfect positive correla-
tion when the distress scenario for financial market materialises, the significance 
level would be αβ. Nevertheless, this assumption is far away from reality, so the sum 
of the Component CoES would be equal to the Expected Shortfall of the financial 
system conditioned to the fact that it is below its λ quantile, which is unknown and 
can change over time. We can think of this Λ-Expected Shortfall as an extension of 
Λ-VaR introduced by Frittelli et al. (2014), where the quantile of the VaR is not fixed, 
but depends on a function Λ. The properties of Λ-VaR have been studied by Burzoni 
et al. (2017) and its application for regulatory capital have been analysed by Hitaj et 
al. (2018). Hitaj et al. (2018) point that Λ-VaR captures tail risk and reacts to market 
swings more quickly than the VaR and Expected Shortfall. A similar conclusion 
should be obtained from the Λ-Expected Shortfall, where the quantile λ would be 
closer to αβ, the closer to one it is the correlation between firms when the distress 
scenario for the financial market materialises.

In mathematical terms
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In mathematical terms

ESm,t(λ) =
N∑
i=1

ωi,t−1CoESi|m,t(α, β), (11)

where λ = αβ in case of conditional perfect dependence. The quantile λ and its distance

from αβ would be an indicator of the tail dependence coming from distress scenarios.

The ratio λ
αβ

expresses how many times is more probable those losses compared to

the benchmark scenario for conditional perfect dependence. ESm,t(λ) quantifies the
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where λ = αβ in case of conditional perfect dependence. The quantile λ and its dis-
tance from αβ would be an indicator of the tail dependence coming from distress

 scenarios. The ratio λ
αβ

 expresses how many times those losses are more probable

compared to the benchmark scenario for conditional perfect dependence. ESm,t(λ) 
quantifies the distress event in terms of mean losses in the financial system. It is 
worth noticing that in this framework we obtain first the losses coming from the 
marginal tail behaviour in an adverse scenario, and then the probability of observ-
ing the overall mean losses is computed. Finally, following the framework of a re-
verse stress test, Equation (6) is used to get the contribution of each financial firm to 
the overall losses. The difference between the Component Expected Shortfall 
and the Component Conditional Expected Shortfall indicates which institution con-
tributes more to systemic risk than it might  be expected given its tail marginal be-
haviour in a crisis period. Hence, an institution that moves in an opposite direction 
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than the remainder firms of the financial system  in a systemic scenario would 
present higher conditional tail losses than its marginal contribution to the aggregate 
losses, i.e. the firm would act as a shock absorber. The consequent ranking of firms 
does not depend on the overall level of losses in the financial system and it might be 
employed to identify those institutions which are more systemic, i.e.
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N∑
i=1

ωi,t−1MESi|m,t(λ) =
N∑
i=1

ωi,t−1CoESi|m,t(α, β) =⇒

N∑
i=1

ωi,t−1

(
MESi|m,t(λ)− CoESi|m,t(α, β)

)
= 0, (12)

Summing up, the proposed methodology provides three main output. First, the ag-

gregate losses under a distress event (ES(λ)). Second, the probability of observing these

system-wide mean losses (λ100%). Third, the ranking that identifies those institutions

that contribute more to the distress event that it would be expected under conditional

perfect dependence framework (ωi,t−1(MESi|m,t(λ) − CoESi|m,t(α, β)). While the two

first outputs provides time series information, the latter output gives awareness about

the cross section importance of the firms within the sample. The three outputs should

be considered jointly to have a comprehensive view of systemic risk.
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Summing up, the proposed methodology provides three main outputs. First, the ag-
gregate losses under a distress event (ES(λ)). Second, the probability of observing 
these system-wide mean losses (λ100%). Third, the ranking that identifies those insti-
tutions that contribute more to the distress event that it would be expected under a 
conditional perfect dependence framework (ωi,t−1(MESi|m,t (λ) – CoESi|m,t (α, β)). While 
the two first outputs provide time series information, the latter output gives aware-
ness about the cross-section importance of the firms within the sample. The three 
outputs should be considered jointly to have a comprehensive view of systemic risk.
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4 A toy financial model

We employ a toy financial system model to study the properties of the proposed 

methodology to quantify a systemic risk event, to compute its probability and to 

build a ranking of the firms. This exercise would be helpful to get an idea about the 

information provided by this approach depending on the value of key variables. 

The subscript t is ignored in the following explanation for the sake of simplicity. A 

Gaussian framework allows us to compute systemic risk measures using closed for-

mulas. The universe of financial institutions is limited to two to build a tractable 

model. Proofs of those formulas are provided in Appendix A.

The returns of the financial firms are represented by

4 A toy financial model

We employ a toy financial system to study the properties of the proposed methodology

to quantify a systemic risk event, to compute its probability and to build a ranking of

the firms. This exercise would be helpful to get an idea about the information provided

by this approach depending on the values of key variables. The subscript t is ignored

in the following explanation for the sake of simplicity. A Gaussian framework allows

us to compute systemic risk measures using closed formulas. The universe of financial

institution is limited at two to build a tractable model. Proofs of those formulas are

provided in Appendix C.

The returns of the financial firms are represented by



r1

r2


 =



µ1

µ2




︸ ︷︷ ︸
µ

+



σ1 0

0 σ2




︸ ︷︷ ︸
D1/2



1 0

ρ
√

1− ρ2




︸ ︷︷ ︸
Lt



ε1

ε2


 ,

where ε1 and ε2 are two independent normal random variables.

The returns of the financial system is given by

rm =

(
r1 r2

)


ω1

1− ω1




The Marginal Expected Shortfall is provided by

MESi|m(α) =
σiρi,mφ (Φ

−1(α))

α
− µi,

the Conditional Expected Shortfall is

CoESi|m(α, β) = σi

(√
1− ρ2i,m

φ (Φ−1(β))

β
+ ρi,m

φ(Φ(α))

α

)
− µi,

15

where ε1 and ε2 are two independent normal random variables. The returns of the 

financial system are given by

4 A toy financial model

We employ a toy financial system to study the properties of the proposed methodology

to quantify a systemic risk event, to compute its probability and to build a ranking of

the firms. This exercise would be helpful to get an idea about the information provided

by this approach depending on the values of key variables. The subscript t is ignored

in the following explanation for the sake of simplicity. A Gaussian framework allows

us to compute systemic risk measures using closed formulas. The universe of financial

institution is limited at two to build a tractable model. Proofs of those formulas are

provided in Appendix C.

The returns of the financial firms are represented by



r1

r2


 =



µ1

µ2




︸ ︷︷ ︸
µ

+



σ1 0

0 σ2




︸ ︷︷ ︸
D1/2



1 0

ρ
√

1− ρ2




︸ ︷︷ ︸
Lt



ε1

ε2


 ,

where ε1 and ε2 are two independent normal random variables.

The returns of the financial system is given by

rm =

(
r1 r2

)



ω1

1− ω1




The Marginal Expected Shortfall is provided by

MESi|m(α) =
σiρi,mφ (Φ

−1(α))

α
− µi,

the Conditional Expected Shortfall is

CoESi|m(α, β) = σi

(√
1− ρ2i,m

φ (Φ−1(β))

β
+ ρi,m

φ(Φ(α))

α

)
− µi,

15

The Marginal Expected Shortfall is provided by

4 A toy financial model

We employ a toy financial system to study the properties of the proposed methodology

to quantify a systemic risk event, to compute its probability and to build a ranking of

the firms. This exercise would be helpful to get an idea about the information provided

by this approach depending on the values of key variables. The subscript t is ignored

in the following explanation for the sake of simplicity. A Gaussian framework allows

us to compute systemic risk measures using closed formulas. The universe of financial

institution is limited at two to build a tractable model. Proofs of those formulas are

provided in Appendix C.

The returns of the financial firms are represented by



r1

r2


 =



µ1

µ2




︸ ︷︷ ︸
µ

+



σ1 0

0 σ2




︸ ︷︷ ︸
D1/2



1 0

ρ
√

1− ρ2




︸ ︷︷ ︸
Lt



ε1

ε2


 ,

where ε1 and ε2 are two independent normal random variables.

The returns of the financial system is given by

rm =

(
r1 r2

)


ω1

1− ω1




The Marginal Expected Shortfall is provided by

MESi|m(α) =
σiρi,mφ (Φ

−1(α))

α
− µi,

the Conditional Expected Shortfall is

CoESi|m(α, β) = σi

(√
1− ρ2i,m

φ (Φ−1(β))

β
+ ρi,m

φ(Φ(α))

α

)
− µi,

15

the Conditional Expected Shortfall is

4 A toy financial model

We employ a toy financial system to study the properties of the proposed methodology

to quantify a systemic risk event, to compute its probability and to build a ranking of

the firms. This exercise would be helpful to get an idea about the information provided

by this approach depending on the values of key variables. The subscript t is ignored

in the following explanation for the sake of simplicity. A Gaussian framework allows

us to compute systemic risk measures using closed formulas. The universe of financial

institution is limited at two to build a tractable model. Proofs of those formulas are

provided in Appendix C.

The returns of the financial firms are represented by



r1

r2


 =



µ1

µ2




︸ ︷︷ ︸
µ

+



σ1 0

0 σ2




︸ ︷︷ ︸
D1/2



1 0

ρ
√

1− ρ2




︸ ︷︷ ︸
Lt



ε1

ε2


 ,

where ε1 and ε2 are two independent normal random variables.

The returns of the financial system is given by

rm =

(
r1 r2

)


ω1

1− ω1




The Marginal Expected Shortfall is provided by

MESi|m(α) =
σiρi,mφ (Φ

−1(α))

α
− µi,

the Conditional Expected Shortfall is

CoESi|m(α, β) = σi

(√
1− ρ2i,m

φ (Φ−1(β))

β
+ ρi,m

φ(Φ(α))

α

)
− µi,

15and and ρi,m = σim
σiσm

. The standard deviation for financial system is obtained from

σm =
√

σ2
1ω

2
1 + σ2

2(1− ω1)2 + 2σ1σ2ρω1(1− ω1),

and the covariance between the returns of the financial system and firm i would be

σ1m = ω1σ
2
1 + σ1σ2ρ(1− ω1)

σ2m = (1− ω1)σ
2
2 + σ1σ2ρω1.

We assume that the returns of the financial market is obtained as the sum of the returns

of two financial firms that have the same size, i.e. ω1 = 0.5. Both firms are normally

distributed with mean zero and standard deviation σ1 = 0.04 and σ2 is defined as X

times the standard deviation of firm 1, i.e. σ2 = 0.04X, where we study values between

0.5 and 3. The dependence between both firms can be defined by a Gaussian copula

with parameter ρ. We set the parameters of α and β equal to 0.1 such that the joint

probability of the distress scenario (under conditional perfect dependence) would be

equal to αβ = 0.01

Figure 2a shows the probability ratio between the probability of occurrence of the

mean aggregate losses provided by the model and the one that we could expect from the

benchmark of conditional perfect dependence. The probability of the distress scenario

could be up to almost 5 times the probability of the distress event under conditional
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We assume that the returns of the financial market are obtained as the sum of the 
returns of two financial firms that have the same size, i.e., ω1 = 0.5. Both firms are 
normally distributed with zero mean and standard deviation σ1 = 0.04 and σ2 is de-
fined as X times the standard deviation of firm 1, i.e., σ2 = 0.04X, where we study 
values between 0.5 and 3. The dependence between both firms can be defined by a 
Gaussian copula with parameter ρ. We set the parameters of α and β equal to 0.1 so 
that the joint probability of the distress scenario (under conditional perfect depend-
ence) would be equal to αβ = 0.01.

Figure 2.a shows the probability ratio between the probability of occurrence of the 
mean aggregate losses provided by the model and the one that we could expect from 
the benchmark of conditional perfect dependence. The probability of the distress 
scenario could be up to almost 5 times the probability of the distress event under 
conditional perfect dependence. The highest increases of the probability of the dis-
tress scenario are found when the correlation parameter between firm 1 and firm 2, 
ρ, is close to one. The probability of the distress event also increases with the higher 
volatility of the firms within the financial system.

Figure 2.b shows different probability ratios between the actual and the probability 
under conditional perfect dependence. Each line indicates respectively 0.5, 1, 2, 3, 4 
and 5 times the probability under conditional perfect dependence. Interestingly, the 
red dashed line indicates that the independence between financial firms (ρ = 0) does 
not imply that the probability ratio is equal to 0.1.2 This is due to the fact that the 
return distribution in the financial system is the result of the convolution of 
the weighted returns of the individual firms. Hence, there are two ways in which an 
individual firm would be dependent on the financial system. First, because of the 
dependence across the remainder financial firms; second, because the individual 
firm is part of the financial system although it could be independent from the re-
mainder institutions.

Figure 2.c shows the same probability ratios as Figure 2.b, but in terms of the cor-
relation of the returns of each financial firm with the financial system. The red line 
indicates the bisector where the returns of both firms present the same correlation 
to the financial system. It is worth noting that there is no need to have a negative 
correlation to the financial system to get a probability ratio below one.

2 This would be the case of conditional independence, where λ = αβ2, so λ/(αβ) = β = 0.1.
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(b) Probability ratio at different levels  

depending on σ2/σ1 and ρ.

(c) Probability ratio at different levels  

depending on ρ1,m and ρ2,m.

The probability ratio is shown (Figure 2.a, Figure 2.b) as a function of the ratio of standard deviations and the 

correlation between firms’ returns or (Figure 2.c) as a function of the correlation between returns of each fi-

nancial firm with the financial system.

The returns of the financial system is the equally-weighted sum of the returns of the individual firms. Each line 

(Figure 2.b, Figure 2.c) indicates respectively 0.5, 1, 2, 3, 4 or 5 times the probability under conditional perfect 

dependence. The red dashed line (Figure 2.b) indicates the independence between the two financial firms or 

(Figure 2.c) the bisector showing equal correlation to the financial system.

The relationship between the correlation of the returns of firm 1 with the financial sys-
tem and the correlation between the returns of the financial firms and its ratio of stand-
ard deviations deserve some comments. Figure 3.a shows a complex relationship be-
tween the correlation of the returns of firm 1 with the financial system, the relative 
standard deviation and the correlation with firm 2. Note that the higher the correlation 
is between firms, the higher would be the lower bound of the correlation between the 
returns of firm 1 and the financial system (Figure 3.b). Also, the higher  the variance of 
the returns of firm 1 is over the variance of firm 2, the closer to one the lower bound 
of the correlation between the returns of firm 1 with the financial system would be 
(Figure 3.c). Interesting conclusions can be obtained when we focus on the combinations 
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of negative correlation between assets and high variance of firm 1. Figure 3.b shows that 
the correlation between the returns of firm 1 and the financial system could be close to 
one, although the relationship of the returns of firm 1 to the remainder financial institu-
tion (firm 2) is −90%. This groundbreaking finding can be understood if we recall that 
the returns of the financial system are the weighted sum of the individual firms. Conse-
quently, conditioned to an equally weighted composition of the financial system, the 
firm with a higher variance would be the one that more probably is driving the move-
ments in the financial system. Also, following the same reasoning, the higher the rela-
tive size of firm 1 over firm 2 is in Equation 1, the higher the correlation between firm 1 
and the financial system would be, regardless of the correlation with financial firm 2.

The correlation between firm 1 and the financial system  FIGURE 3 

depending on key parameters

(a) ρ1,m depending on σ2/σ1 and ρ.
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(c) ρ1,m depending on σ2/σ1

The correlation between the returns of the financial firm 1 and the financial system is shown as a

function of the ratio of standard deviations and the correlation between institutions (3a).

The correlation of returns between the financial institutions and the correlation between the returns

of firm 1 and the financial market is not linear (3b). The higher is the correlation between firms, the

more probable would be having a positive correlation between financial firm 1 and the financial system.

The relative standard deviation is a key parameter to determine the correlation between the returns of

firm 1 and the financial market (3c). The higher is the variance of the returns of firm 1 in comparison

to firm 2, the closer is the correlation to one.

The returns of the financial system is the equally-weighted sum of the returns of the individual firms.42

(b) ρ1,m depending on ρ. (c) ρ1,m depending on σ2/σ1.

The correlation between the returns of financial firm 1 and the financial system is shown as a function of the 

ratio of standard deviations and the correlation between institutions (Figure 3.a).

The correlation of returns between the financial institutions and the correlation between the returns of firm 1 

and the financial market is not linear (Figure 3.b). The higher is the correlation between firms, the more probable 

would be having a positive correlation between financial firm 1 and the financial system. The relative standard 

deviation is a key parameter to determine the correlation between the returns of firm 1 and the financial market 

(Figure 3.c). The higher the variance of the returns of firm 1 in comparison to firm 2 is, the closer the correlation 

is to one.

The returns of the financial system are the equally weighted sum of the returns of the individual firms.
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Finally, Figure 4.a presents the weighted difference between MES1|m and CoES1|m for 
institution 1. Equation 12 proves that the sum of the weighted difference is zero, so 
we would have the opposite figure for institution 2. The weighted difference would 
be positive if the returns of financial firm 1 present a higher variance than those 
coming from firm 2. The quantitative difference in absolute terms depending on 
which variable has a higher variance comes from the differences in level (Figure 4.c). 
On the one side, when the returns of firm 1 present twice the standard deviation of 
firm 2 σ1 = 0.04 and σ2 = 0.02, so the weighted difference could be up to 3.3%. On 
the other side, when the returns of firm 2 present twice the standard deviation of 
firm 1 σ1 = 0.04, σ2 = 0.08 and the weighted difference could be up to −4%. The ratio 
between standard deviations determines the sign of the difference between MES1|m 
and CoES1|m. A ratio higher than one implies a positive difference, whereas a ratio 
lower than one means a negative difference. Obviously, when the ratio between 
standard deviations is one the difference between MES1|m and CoES1|m is zero. This 
threshold would be different if ω1 ≠ 0.5.

The higher the correlation between financial institutions is, the more probable it is 
to have a weighted difference close to zero (Figure 4.b). A dispersion measure of the 
cross-section distribution of weighted difference provides an intuition about the pos-
sible level of dependence in the financial system. The lower the dispersion is, the 
higher the correlation could be. Indeed, there are two reasons why we could have a 
weighted difference equal to zero under this Gaussian framework. First, due to per-
fect correlation between both assets. Second, due to the equal variance of both finan-
cial firms (conditioned to an equally weighted composition of the financial system). 
Under the latter case, a lower dispersion measure would not be indicating a higher 
correlation between the institutions. The probability of the aggregate losses λ could 
be helpful to distinguish between these two cases. Low dispersion in the weighted 
difference and a higher probability of occurrence indicate a high interdependence 
between the financial firms in the market.
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The weighted difference between MES1|m and CoES1|m   FIGURE 4 

depending on key parameters

(a) ω1 (MES1|m(λ) − CoES1|m (α, β) depending on σ2/σ1 and ρ.

(b) ω1 (MES1|m(λ) − CoES1|m (α, β) depending on ρ. (c) ω1 (MES1|m(λ) − CoES1|m (α, β) depending on σ2/σ1.

The weighted difference between MES and CoES is shown as a function of the ratio of standard deviations 
and the correlation between institutions (Figure 4.a).
The sign of the relationship between the weighted difference between MES1|m and CoES1|m and the correlation 
between firm 1 and 2 is not defined (Figure 4.b), although the higher the correlation is, the closer the weight-
ed difference is to zero. In case of negative correlation, values could be more extreme, while the sign depends 
on the relative standard deviation between institutions (Figure 4.c).
The returns of the financial system are the equally-weighted sum of the returns of the individual firms.
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5 An empirical application to Spanish funds data

This section applies the proposed model to real financial data from the Spanish mu-
tual fund sector. The definition of the variable of interest and the relative impor-
tance of each firm, i.e., variables r and ω in Equation (1), depends on the key sys-
temic risks faced by the analysed sector. The FSB (2017) identifies the liquidity 
mismatch in investment funds as the main structural vulnerability in open-ended 
funds. The main risk is related to the potential redemption withdrawals and their 
ability to meet those redemptions without selling illiquid assets that could generate 
losses for the investment fund and could trigger fire sales with potential impact on 
the overall financial sector (Braverman and Minca, 2018; Cont and Wagalath, 2016; 
Duarte and Eisenbach, 2015). Hence, ri would be the redemption faced by fund i and 
ωi would be a measure of illiquidity of the fund i.

5.1 Data

This section presents in a first stage the different data sources that have been com-
bined to build this unique and novel database. In a second stage it introduces how 
the measures of net flows and liquidity are computed. The biannual funds data 
about portfolio composition span the December 2008-December 2019 period, where-
as the net flow data are computed weekly from 2 January 2009 to 26 June 2020.

The cleaning process of the dataset of mutual funds filters those funds that present 
some kind of restriction on redemptions and those funds in which their portfolio 
composition is not fully disclosed.3 Also, in order to have a balanced panel data, only 
those funds which have been active for the complete period 2009-2020 are consid-
ered.

Figure 5 shows the fund sample at the end of 2019 as a function of the liquidity of 
its portfolio (x-axis) and the assets under management (y-axis). The colour of each 
dot indicates the fund category. The dispersion regarding the liquidity widely varies 
from 10% to 80% while the size of the fund is between €10 million and €1 billion.

3 Appendix B.1 provides a detailed explanation on the types of funds which present a particular redemp-
tion policy and the concept of portfolio disclosure.
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HQLA and AuM of the fund sample at December 2019 FIGURE 5

B.2 An empirical exercise

Figure 5: HQLA and AuM of the fund sample at December 2019

This figure shows the scatter plot of the fund sample showing on the x-axis the HQLA of the fund and

in the y-axis the AuM in euros. The colour of each dot indicates the fund style according to different

criteria. Appendix D.2 indicates the criteria to define a fund in a certain category.
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This figure shows the scatter plot of the fund sample showing on the x-axis the HQLA of the fund and in the 
y-axis the AuM in euros. The colour of each dot indicates the fund style according to different criteria. Appen-
dix B.2 indicates the criteria to define a fund in a certain category.

5.1.1	 Data	sources	and	sample	construction

The main source of data comes from the confidential information statements of 
undertakings for collective investment in transferable securities schemes, those 
identification codes are available at BOE (2008). The data regarding Net Asset Value 
(NAV) per share, Assets under Management (AuM) and dividends are obtained 
from statements MB2 and T01, while information in statement M04 provides the 
decomposition at a compartment level. The statement MB7 provides a decomposi-
tion of the fund’s AuM by the amount invested by its participants. This statement is 
useful to classify each fund as retail or wholesale fund.4

Bloomberg5 and Thomson-Reuters6 databases are employed to identify the country, 
sector and rating7 of each position held by the fund, which is obtained from state-
ment M04. This information is retrieved at the end of each semester and it allows 
for the classification of funds depending on features like credit quality of their as-
sets.8 Also, the credit rating data are employed to build a liquidity index, i.e., the 
high-quality liquid assets that helps assess the resilience of investment funds to face 

4 This study follows the approach employed by Cambon and Losada (2014) to define an investment fund 
as wholesale, i.e., those funds where investors holding more than €150,000 represent at least the 50% of 
the fund’s AuM.

5 Fields employed: CNTRY OF RISK, CNTRY OF DOMICILE, INDUSTRY SECTOR, RTG MOODY, RTG SP, RTG 
FITCH, RTG MOODY ISSUER, RTG SP LT LC ISSUER CREDIT, and RGT FITCH LT ISSUER DEFAULT.

6 Fields employed: TR.FiIssuerCountry, TR.HQCountryCode, TR.TRBCEconomicSector, TR.GR.Rating, and  
TR.IssuerRating.

7 Rating is considered the issue credit quality for bond assets or issuer credit quality for stock assets.
8 Importantly, the classification of funds at each semester is done with the information obtained from the 

previous semester.
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redemption scenarios. This approach is much more flexible than the classification 
provided by Morningstar, which is the database employed by ESMA (2019) for its 
simulation exercise using investment fund data, for two reasons. Firstly, Chen et al. 
(2019) have pointed to the existence of a bias in the Morningstar classification for 
mutual funds. According to the mentioned article, mutual funds systematically re-
port a higher credit rating than the one expected from its portfolio composition in 
order to signal higher returns than expected. Secondly, our approach helps compute 
precisely the liquid positions in the investment funds because portfolio composi-
tion and credit quality information is gathered, while Morningstar database pre-
sents these sets of information separately.

5.1.2	 Measurement	of	the	liquidity	of	investment	funds

At an individual level, the net flow of fund i is obtained from the AuM time series. 
First, the return Ri,t of the fund from the NAV per share (NAVi,t), i.e.
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we obtain the return Ri,t of the fund from the NAV per share (NAVi,t), i.e.

Ri,t =
NAVi,t −NAVi,t−1

NAVi,t−1

.

Second, the net flows measured as a ratio of AuM is obtained from the adjustment of

the change in the AuM of the fund from t− 1 to t given the returns Ri,t that the fund

has obtained between t− 1 to t, i.e.

ri,t =
AuMi,t − AuMi,t−1(1 +Ri,t)

AuMi,t−1

. (13)

Consequently, Equation (13) presents the variable ri in Equation (1).

A measure of liquidity of investment funds has to be set in order to estimate the re-

silience of funds to redemption shocks. This study follows the liquidity bucket approach,
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Consequently, Equation (13) presents the variable ri in Equation (1).

A measure of liquidity of investment funds has to be set in order to estimate the 
resilience of funds to redemption shocks. This study follows the liquidity bucket 
approach, where each asset class in the fund portfolio is classified in buckets which 
have different degrees of liquidity. ESMA (2015) employs the High-Quality Liquid 
Assets (HQLA) approach, where a liquidity index is obtained by the weighted sum 
of the assets of the fund and the weight depends on the bucket in which each asset 
class is set, i.e.
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fund and the weight depends on the bucket in which each asset class is set, i.e.

HQLA =
n∑

k=1

wkxsk, (14)

where wk is the liquidity weight for asset k and sk is the share of asset k as a percentage

of the AuM. The haircuts applied to financial assets in stressed conditions provides an

economic interpretation of the liquidity weights. The liquidity weights employed in this

study are taken from ESMA (2019) and can be checked in Table 1.

[Insert Table 1 here]

It is worth noting that the combination of different databases provides a higher granu-

larity that helps assess the HQLA in a very precise way. Table 2 presents an example

of the portfolio composition and credit quality in a investment fund of the sample.

ESMA (2019) has access to the portfolio composition and the credit quality separately,

so they assume that the credit quality is uniformly distributed across each asset class.

This implies that they are using only the last column and the last row from Table

2. The detailed information obtained from the financial statements, where the ISIN

of each asset is available, combined with the credit quality of those assets taken from

Bloomberg and Thomson-Reuters databases helps build an in-depth view of the liquid

assets held by Spanish investment funds. Using all the information in the table arises a

HQLA of 37.4%, while using the available information in the ESMA (2019) Economic

Report is 29.9%.

[Insert Table 2 here]
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where wk is the liquidity weight for asset k and sk is the share of asset k as a percent-
age of the AuM. The haircuts applied to financial assets in stressed conditions pro-
vide an economic interpretation of the liquidity weights. The liquidity weights em-
ployed in this study are taken from ESMA (2019) and can be checked in Table 1.
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Liquidity weights by asset type TABLE 1

%

Asset class CQS1 CQS2 CQS3 < CQS3

Government bonds 100 85 50 0

Corporate 85 50 50 0

Securitised 65 0 0 0

Equities 50 50 50 50

Cash 100 100 100 100

Note: CQS: credit quality step. CQS1 refers to AAA to AA ratings, CQS2 to A ratings, CQS3 to BBB ratings, and 
< CQS3 to any rating below BBB-. Liquidity weights are shown in %.
Source: ESMA (2019) and (ESMA, 2015, p. 37).

It is worth noting that the combination of different databases provides a higher 
granularity that helps assess the HQLA in a very precise way. Table 2 presents an 
example of the portfolio composition and credit quality in an investment fund of 
the sample. ESMA (2019) has access to the portfolio composition and the credit 
quality separately, so they assume that the credit quality is uniformly distributed 
across each asset class. This implies that they are using only the last column and the 
last row from Table 2. The detailed information obtained from the financial state-
ments, where the International Securities Identification Numbering (ISIN) code of 
each asset is available, combined with the credit quality of those assets taken from 
Bloomberg and Thomson-Reuters databases, helps build an in-depth view of the 
liquid assets held by Spanish investment funds. Using all the information in 
the table a HQLA of 37.4% is obtained, while using the available information in the 
ESMA (2019) Economic Report the corresponding value is 29.9%.

Example of the composition of a fund portfolio TABLE 2

%

Sovereign debt Corporate debt Equity Cash Total

CQS1 0.0 0.0 – – 2.0

CQS2 2.2 17.0 – – 21

CQS3 3.0 34.1 0.0 8.5 39

< CQS3 1.5 33.8 – – 37

Total 6.7 84.9 0.0 8.5 100

Note: CQS: credit quality step. CQS1 refers to AAA to AA ratings, CQS2 to A ratings, CQS3 to BBB ratings, and 
< CQS3 to any rating below BBB-. Liquidity weights are shown in %.
This table shows an example of the composition of a fund portfolio and the implications that the higher 
granular data has for the assessment of HQLA. To compute the HQLA we use the weights in Table 1.
ESMA only can get the information from the last column and last row computing a HQLA equal to 29.9%, 
while using all the information provides a HQLA equal to 37.4%.

To get the values of ω in Equation (1), we use the AuM weighted by the illiquidity of 
the fund portfolio, which is defined as 100 − HQLA. In other words, ωi is defined as
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5.2 Methodology

To perform the empirical exercise, we use a non-parametric method, based in a Kernel

smoothing function copula using a normal kernel. The normal kernel function provides

the distribution of the funds flows, while for the flows of the financial system, the

kernel function is combined with a Pareto Tail distribution below quantile 5th and

above quantile 95th to meet possible tail behaviour. The next codes summarizes the

procedure followed to get the results from a simulation process.

In order to get time-varying features, the kernel functions is built using the net flows

from the last six semesters and the weight employed is the one from the previous

semester. For instance, to analyse the systemic risk of the fund sector at the first

semester of 2020, we get the distribution and dependence between flows using the

Kernel function on the weekly net flows from the first semester of 2017 to the first

semester of 2020. The weights are obtained from the AuM and the HQLA of the funds

at the second semester of 2019.
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Algorithm to simulate realisations from the joint distribution
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Algorithm 1 Algorithm to simulate realizations from the joint distribution

for k ← N do � Get marginal distribution

2: Uk = Fk(rk)

end for k

4: Um = Fm(
∑N

k ωkrk) � Build target variable

for k ← N do � Get dependence to the financial system

6: Cm,k(Uk, Um)

end for k

8: for w ← W do � Now the simulation process starts

vm,w = rand ∗ α � The financial system is below its α100-th quantile

10: for k ← N do

vk,w = C−1
m,k(rand|vm,w) � Use the inverse conditional copula. See Joe

(2014).

12: r̃k,w = F−1
k (vk,w)

end for k

14: end for w

Fk is the kernel smoothing function for firm k, while Fm is the kernel smoothing function for the financial system. See

Bowman and Azzalini (1997). rand refers to the realization of a uniform distribution (0,1). W refers to the number of

simulations. ωk ∈ [0, 1] is the weight associated with the individual mutual fund k such that
∑

k wk = 1.

Csystem,k(Uk, Usystem) is estimated using the bivariate kernel smoothing function.
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Algorithm	2	
Computing risk measures from the simulated net flows

	 for	
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Algorithm 2 Computing risk measures from the simulated net flows.

for k ← N do

2: CoV aR(1, k) = max (r̃k,1:W such that # {rk,1:W ≤ CoV aRk} = round(Wβ))

CoESk =
(∑W

w=1 r̃k,w r̃k,w<CoV aRk

)
/
(∑W

w=1 r̃k,w<CoV aRk

)

4: end for i

ESλ =
∑

k(ωkCoESk)

6: λ = q such that ESλ = E(rm|rm < F−1
m (q))

round is a function that rounds to nearest integer.

MESλ is obtained computing the mean of the simulated returns from Algorithm 1 by changing α for λ.

A is an indicator function that values 1 if the condition A is met and zero otherwise.

5.3 Results

This section presents in a first stage the results from our proposed methodology, and in

a second stage we compare the ranking than we have obtained with the sort institution

following other risk measures or indicators. In order to run the simulation, the distress

scenario is setting below the median value both for the aggregated net flow and the

conditioned net flow, i.e. α and β are equal to 0.5.

To begin with, the Expected Shortfall obtained from Eq. (11) and its probability

associated (λ) is shown in Figure 6a. The Expected Shortfall presents a decreasing

trend until the second semester of 2014, then it experiences an increase in 2015 and the

decreasing trend continues until the end of the sample. The probability of the mean

losses provided by the Expected Shortfall are quite low, below 1% for all the considered

period.

The cross section contribution, i.e. ω(MES(λ−CoES(α, β), is computed for the indi-
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A is an indicator function that values 1 if the condition A is met and zero otherwise.

5.3 Results

This section summarizes the main results. Firstly, we present the outcomes from our 
methodology. Afterwards, we compare the fund ranking according to different risk 
measures and indicators, which help us to identify the kind of information gathered in 
our methodology. In order to perform the simulation procedure, the distress scenario 
is defined as being below median values, i.e. parameters α and β are set equal to 0.5.

To begin with, the Expected Shortfall obtained from Equation (11) and its associated 
probability (λ) is shown in Figure 6.a. The Expected Shortfall presents a decreasing 
trend until the second semester of 2014, then it experiences an increase in 2015 and 
the decreasing trend continues until the end of the sample. The probability of the 
mean losses provided by the Expected Shortfall are quite low, below 1% for all 
the considered period.

The cross section contribution, i.e. ω(MES(λ) − CoES(α, β)), is computed for the indi-
vidual funds and then they are summed across those funds which are within the 
same fund category.9 Using this information four periods can be identified in 
the data set. The first period, up to the second semester of 2014, where the systemic 
risk is led by the sovereign fund category, which coincides with the European sover-
eign debt crisis. From the first semester of 2015 to the second semester of 2017, high 
yield and wholesale stock categories lead the systemic risk within the mutual fund 
sector. From the second semester of 2017 to the second semester of 2019 the sover-
eign category, in particular wholesale sovereign funds, is the one that contributes 
most to systemic risk. Finally, the retail stock and the high yield category are the 
main contributors to systemic risk in the last two semesters of the sample. This in-
creasing role of fund categories investing in corporate assets to build the systemic 
risk indicators could be related to the COVID-19 crisis.

9 Detailed information about the criteria to set a fund in certain fund category is shown in Appendix B.2.



Deconstructing systemic risk: A reverse stress testing approach 29

 Information obtained from the proposed methodology    FIGURE 6

Figure 6: Information obtained from the proposed methodology

(a) Time series information: ES(λ) and λ

(b) Cross section information: ω(MES(λ)− CoES(α, β))

The top subplot (a) shows the time series information about the aggregate systemic risk within the

fund sector using parameters α = β = 0.5. Both the aggregate losses and the probability associated to

those losses decreases from 2015. Confidence interval are generated by simulation. The bottom subplot

(b) indicates the weighted difference between MES(λ) and CoES(α, β) of the funds aggregated by

investment style. Further information regarding the classification of the funds can be found in Appendix

D.2.
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(b) Cross section information: ω(MES(λ) − CoES(α, β)).

The top subplot (Figure 6.a) shows the time series information about the aggregate systemic risk within the 
fund sector using parameters α = β = 0.5. Both the aggregate losses and the probability associated to those 
losses decreases from 2015 onwards. Confidence intervals are generated by simulation. The bottom subplot
(Figure 6.b) indicates the weighted difference between MES(λ) and CoES(α, β) of the funds aggregated by in-
vestment style. Further information regarding the classification of the funds can be found in Appendix B.2.
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Figure 7 shows the systemic risk contribution using the CES of Banulescu and 
Dumitrescu (2015) for each fund and then the values have been aggregated by fund 
style.10 It can be distinguished in the figure the main four periods that have been 
indicated in Figure 6.b. However, the CES measure presents two main disadvantag-
es compared to our approach. Firstly, the scale is changing over time as the Expect-
ed Shortfall evolves, so the cross-section contribution at t cannot be properly com-
pared to the cross-section contribution at t − 1. The approach in this paper is scale 
invariant, so the contribution of each category at time t does not depend on any time 
series variable but on the relative performance of the remainder funds on that 
time. Secondly, although CES allows to distinguish between funds that contribute and 
funds that absorb risk, e.g. for 2014-2018 we have fund categories with positive 
and negative contributions, we cannot divide the fund sample to distinguish those 
funds which deserve a higher attention.

Time series of ωMES(α) aggregated by fund category  FIGURE 7Figure 7: Time series of ωMES(α) aggregated by fund category.

This figure indicates the weighted MES(α) of the funds aggregated by investment style. Note than

other measures like MES of ∆CoESm|i do not allow to aggregate individual measures in groups.

Further information regarding the classification of the funds can be found in Appendix D.2.

C Building systemic risk measures

The expression for each measure is provided first in a general formula and then the

particular one under the chosen methodology.

C.1 Expected Shortfall (ES) of the financial market

The V aRm(α) gives information about how large is the minimum return for the financial

market m with (1 − α)100% confidence level. It is obtained by solving the implicit
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This figure indicates the weighted MES(α) of the funds aggregated by investment style. Note that other meas-
ures like MES of ∆CoESm|i do not allow to aggregate individual measures in groups. Further information re-
garding the classification of the funds can be found in Appendix B.2.

Table 3 provides the identification code that ensures the anonymity of the ten 
funds which present a highest risk measure or indicator to compare how much 
our ranking meets other criteria of performance. The last row indicates how many 

10 We have employed this risk measure for comparability because ∆CoESm|i and MES do not allow for cross 
section aggregation.
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funds are shared with our ranking in the top ten funds according to those criteria. 
The matching reaches the 60% with the CES measure of Banulescu and Dumitres-
cu (2015) and a 50% if  the size of the fund is looked at, whereas it shows a 30-20% 
of common funds with the remainder measures or indicators. More information 
about the sector, the liquidity and the size of the funds in the top ten is shown in 
Table 4.

Ranking according to ω(CoES − MES) TABLE 3

Ranking  ω(MES − CoES)  CES MES ∆CoESm|i  HQLA AuM

1st 12 10 80 12 65

2nd 37 37 62 80 80

3rd 10 53 19 69 60

4th 63 84 43 70 74

5th 43 80 61 63 72

6th 87 12 46 68 84

7th 84 61 88 59 70

8th 80 97 64 57 94

9th 97 6 40 5 67

10th 31 78 37 38 82

100% 60% 30% 30% 20%

Note: The identification code that ensures the anonymity of the funds is shown in each column for the 10-high-
est systemic risk measures. The risk measures are our proposed ranking (ω(MES − CoES)), the Component Ex-
pected Shortfall (CES(0.5)), the Marginal Expected Shortfall (MES(0.5)), the Delta CoES (∆CoESm|i(0.5, 0.5) under 
the definition of Girardi and Ergün (2013)) and the HQLA and the AuM of each fund.
The HQLA is shown in %. The AuM is shown in millions of euros.
The risk measures are computed at the end of June 2020. The HQLA and the AuM are shown at the end of 
2019.
The last row indicates the percentage of funds in the top ten which are common to our ranking. The weight 
(ω) is obtained from Equation (15).
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Information about the ten mutual funds with highest risk measures TABLE 4

ω(MES − CoES) ∆CoESm|i

Fund Sector HQLA AuM Fund Sector HQLA AuM

12 Retail stock funds 48.74 306.23 12 Retail stock funds 48.74 306.23

37 Sovereign bond funds 45.71 324.66 80 Mixed bond funds 9.44 34.63

10 Sovereign bond funds 53.83 598.16 69 Sovereign bond funds 58.39 43.31

63 Wholesale stock funds 53.10 1825.32 70 Sovereign bond funds 34.90 24.87

43 Wholesale stock funds 52.76 72.40 63 Wholesale stock funds 53.10 1825.32

87 Mixed bond funds 53.65 145.41 68 Wholesale stock funds 50.55 46.24

84 Sovereign bond funds 31.21 254.39 59 Wholesale stock funds 50.94 56.23

80 Mixed bond funds 9.44 34.63 57 Sovereign bond funds 58.01 46.28

97 Mixed bond funds 47.51 358.04 5 Investment grade corporate 

bond

42.22 234.85

31 Retail stock funds 42.62 300.47 38 Wholesale stock funds 53.96 48.02

ωMES HQLA

Fund Sector HQLA AuM Fund Sector HQLA AuM

10 Sovereign bond funds 53.83 598.16 65 Sovereign bond funds 8.43 43.24

37 Sovereign bond funds 45.71 324.66 80 Mixed bond funds 9.44 34.63

53 Retail sovereign bond funds 54.28 360.81 60 Sovereign bond funds 27.84 75.70

84 Sovereign bond funds 31.21 254.39 74 High yield corporate bond 

funds

28.18 15.27

80 Mixed bond funds 9.44 34.63 72 Retail sovereign bond funds 29.81 72.82

12 Retail stock funds 48.74 306.23 84 Sovereign bond funds 31.21 254.39

61 Sovereign bond funds 77.52 314.85 70 Sovereign bond funds 34.90 24.87

97 Mixed bond funds 47.51 358.04 94 High yield corporate bond 

funds

35.12 41.90

6 Wholesale stock funds 53.06 1571.44 67 Mixed bond funds 36.53 90.91

78 Wholesale stock funds 51.43 248.39 82 Other funds 37.96 8.17

MES AuM

Fund Sector HQLA AuM Fund Sector HQLA AuM

80 Mixed bond funds 9.44109 34.62832 63 Wholesale stock funds 53.0966 1825.318

62 Other funds 73.8962 62.79962 6 Wholesale stock funds 53.0591 1571.441

19 Wholesale stock funds 54.5729 7.239257 10 Sovereign bond funds 53.8268 598.1555

43 Wholesale stock funds 52.761 72.40415 93 Mixed bond funds 46.2316 497.7008

61 Sovereign bond funds 77.5181 314.8527 4 Wholesale stock funds 53.5572 379.1799

46 Other funds 79.9552 25.42115 53 Retail sovereign bond funds 54.2797 360.8065

88 Wholesale stock funds 52.8696 31.31498 97 Mixed bond funds 47.508 358.0366

64 Wholesale stock funds 51.6707 29.60354 37 Sovereign bond funds 45.7126 324.6636

40 Sovereign bond funds 67.756 16.84379 61 Sovereign bond funds 77.5181 314.8527

37 Sovereign bond funds 45.7126 324.6636 12 Retail stock funds 48.7351 306.2278

Note: The identification code that ensures the anonymity of the funds is shown in the first column of each 

subtable for the 10-highest systemic risk  measures. The risk measures are our proposed ranking (ω(MES − 

CoES)), the Component Expected Shortfall (CES(0.5)), the Marginal Expected Shortfall (MES(0.5)), the Delta CoES 

(∆CoESm|i(0.5, 0.5) under the definition of Girardi and Ergün (2013)) and the HQLA and the AuM of each fund.

The HQLA is shown in %. TheAuM is shown in millions of euros.

The risk measures are computed at the end of June 2020. The HQLA and the AuM are shown at the end of 2019.

The table shows the HQLA, the AuM and the sector of each fund in the top ten ranking. Information about the 

set of sectors within the mutual fund universe are explained in detail in Appendix B.2.
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6 Conclusions

This article introduces a new methodology to quantify the losses coming from sys-
temic risk, compute its probability of occurrence and the role of each institution 
within the financial sector. The flexibility of the methodology holds on statistical 
concepts coming from the Expected Shortfall and the freedom to choose those 
weights that better explain the features that could trigger a systemic event in a cer-
tain sector.

This methodology provides a comprehensive view about systemic risk through the 
connection between financial firms and the proxy for the financial market. The quan-
tification and its probability of occurrence shed light about the consequences of 
stronger dependence and higher variance in the variables of interest for financial 
firms. The ranking obtained from the weighted difference between its marginal be-
haviour and its tail performance provides a threshold around zero in order to distin-
guish those institutions that present a higher risk than the overall financial sector. 
The empirical exercise using Spanish investment fund data shows that the ranking 
following the proposed approach is different from the one obtained by other risk 
measures like the MES or the ∆CoES. Also, it provides more relevant information for 
the identification of particular firms in the cross section than the CES.

Further research should be performed regarding key variables in the balance sheet 
or the portfolio composition that could determine the weights for the financial insti-
tutions into the financial sector. Depending on the sector of the financial industry, 
the key features to take into account would be different and should be linked to the 
potential risk of financial firms. For instance, from a macroprudential point of view, 
relative weights of bank size over the domestic GDP could help to underline the 
D-SIB role  in the EU economy. Also, the leverage ratio could be a rule of thumb to 
choose the weights for the banking subsector. The fire sales and the potential price 
impact are the main systemic risks coming from the investment fund sector (ESMA, 
2019). Systemic measures could provide insightful intuition about the firms to be 
closely supervised. In order to reach this goal, the right weights should be chosen 
based on liquidity measures and NAV to mimic the behaviour of the investment 
fund sector in case of fire sales in financial markets. Also, future extensions could 
study the systemic risk methodology presented here using some parametric models 
that take into account the joint skewness and kurtosis of the distribution, e.g. the 
Skewed-t copula (see Jaworski et al., 2010; Lucas et al., 2014).

The findings of this piece of research have implications for policy makers and mar-
ket supervisors, allowing them to obtain relevant information about the magnitude 
and probability of the losses in a distress scenario. Besides, the ranking provides 
some insightful intuition about which are the main institutions from where these 
losses could come.
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Appendices

A Building systemic risk measures

The expression for each measure is provided first in a general formula and then the 
particular one under the chosen methodology.

A.1	 Expected	Shortfall	(ES)	of	the	financial	market

The VaRm(α) gives information about how large is the minimum return for the fi-
nancial market m with a (1 − α)100% confidence level. It is obtained by solving the 
implicit equation

 

equation

P [rm ≤ V aRm(α)] = α. (16)

Expressing Equation (16) following the proposed model under Gaussian assumptions

V aRm(α) = µm + σmΦ
−1(α) (17)

where Φ−1 is the inverse standardized cumulative Gaussian distribution function.

The Value-at-Risk only looks at a certain quantile, consequently it isn’t a subaddi-

tive measure. The properties of this risk measure can be enhanced if we look further

than the quantile of interest for the V aR. The Expected Shortfall tells us how large

are the average losses in the financial market if these losses are higher than −V aR(α),

i.e.,

ESm(α) = Em [−rm|rm < V aRi(α)] (18)

=
1

α

∫ α

0

−V aRm(s) ds

where for the Gaussian case is a closed form without computing numerically the integral

ESm(α) = σmα
−1φ(Φ−1(α))− µm. (19)

where φ is the probability standardized Gaussian distribution function.
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where φ is the probability standardised Gaussian distribution function.
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Expected	Shortfall	(ES)	under	Gaussian	framework

Equation (19) can be rewritten in a Gaussian framework using VaR definition pro-

vided in Equation (17), i.e.

Expected Shortfall (ES) under Gaussian framework Equation (19) can be

rewritten in a Gaussian framework using V aR definition provided in (17), i.e.

ESm(α) =
1

α

∫ α

0

−µm − σmΦ
−1(s) ds

= −µm − σm

α

∫ α

0

Φ−1(s) ds.

Consequently, the problem is reduced to the integration of the inverse cumulative Gaus-

sian distribution function from 0 to α. Define a change of variable s = Φ(r), then

ds = φ(r)dr so
∫ α

0
Φ−1(s) ds =

∫ Φ−1(α)

−∞ rφ(r) dr where φ is the probability Gaussian

distribution function. Subsequently,

∫ Φ−1(α)

−∞
rφ(r) dr =

∫ Φ−1(α)

−∞

r√
2π

exp(−r2/2) dr

=
1√
2π

[
− exp(−r2/2)

]Φ−1(α)

−∞

= −φ(Φ−1(α)).
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The Marginal Expected Shortfall of financial institution i is the mean loss of firm i

when financial market’s returns are below its V aRm(α), i.e.

MESi(α) = E (−ri|rm < V aRm(α))

=

∫ 1

0

P (Fi(ri) = s|rm < V aRm(α))F
−1
i (s) ds, (20)

where Fi is the cumulative distribution function of firm i’s returns and F−1
i is its inverse.

For the Gaussian case, the MES expression is

MESi|m(α) =
σiρimφ (Φ

−1(α))

α
− µi. (21)

Component Expected Shortfall (CES) is directly obtained weighting MES by the

market capitalization for each firm.

Marginal Expected Shortfall (MES) in a Gaussian framework.

r = (rm, ri)
′ can be expressed as



rm

ri


 =



µm

µi




︸ ︷︷ ︸
µ

+



σm 0

0 σi




︸ ︷︷ ︸
D1/2




1 0

ρim
√

1− ρ2im




︸ ︷︷ ︸
L



Φ−1(Um)

Φ−1(Ui)


 (22)

where L matrix represents Choleski decomposition and ρim is the correlation parame-

ter. Um and Ui are uniform independent distributed variables while Φ− is the inverse

cumulative Gaussian distribution function.

The vector r is normally distributed with mean µ and covariance matrix D1/2LL′D1/2.

Given a value for financial market returns rm, the returns distribution of firm i be-
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where L matrix represents Choleski decomposition and ρim is the correlation param-

eter. Um and Ui are uniform independent distributed variables while Φ− is the in-

verse cumulative Gaussian distribution function.

The vector r is normally distributed with mean µ and covariance matrix D1/2LL'D1/2. 

Given a value for financial market returns rm, the returns distribution of firm i 

becomes comes ri|rm N
(
µi +

σiρim
σm

(rm − µm) ,
√

1− ρ2imσi

)
, where N refers to the Gaussian

distribution where the first input is the mean (µi|m) and the second one is the standard

deviation (σi|m).

If the realization of rm is expressed in terms of quantiles, i.e. rm = Φ−1(q)σm +

µm, the mean value of ri given that rm is in its q quantile is µi + σiρimΦ
−1(q), i.e.

E (ri|rm = V aRm(q)). Then, the mean value of ri given that rm is at most in its α

quantile would be

E (ri|rm < V aRm(α)) = µi + σiρim

∫ α

0
Φ−1(q)dq

α︸ ︷︷ ︸
E( rm−µm

σm
|rm<V aRm(α))

.

Because of the solution of previous integral, the MES expression is

MESi|m(α) =
σiρimφ (Φ

−1(α))

α
− µi.

C.3 Conditional Expected Shortfall (CoES)

The Conditional Expected Shortfall of financial institution i given that the financial

market m is below its quantile α is expressed as

CoESi|m(α, β) = Et−1 (−ri|ri < CoV aRm(α, β))

=
1

β

∫ s∗

0

P (Fi(ri) = s|rm < V aRm(α))F
−1
i (s) ds, (23)

where s∗ is such that P (Fi(ri) < s∗|rm < V aRm(α)) = β. In a Gaussian framework

this expression can be rewritten as

CoESi|m(α, β) = σi

(√
1− ρ2im

φ (Φ−1(β))

β
+ ρim

φ(Φ(α))

α

)
− µi, (24)
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Conditional	Expected	Shortfall	(CoES)	in	a	Gaussian	framework

From Equation (21) and taking under consideration the representation of rt in Equa-
tion (22), Equation (9) can be rewritten as
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√
1− ρ2im
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0

Φ−1(q)dq +

∫ 1

β

Φ−1(q)dq

)}
− µi

= σi
ρimφ (Φ

−1(α))

α
− µi

︸ ︷︷ ︸
−µi|m

−

σi|m︷ ︸︸ ︷
σi

√
1− ρ2im

(
1

β

∫ β

0

Φ−1(q)dq

)

︸ ︷︷ ︸
E(A)

P (A)︷︸︸︷
β −

σi|m︷ ︸︸ ︷
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√
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(
1

1− β
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E(AC)

P (AC)︷ ︸︸ ︷
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where

E(A) = E

(
(ri − µi|m)

σi|m
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,
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E(AC) = E
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(ri − µi|m)

σi|m
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From the solution of these integrals,
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.
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From the solution of these integrals,

Conditional Expected Shortfall (CoES) in a Gaussian framework From Equa-

tion (21) and taking under consideration the representation of rt in Equation (22),
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ConsequentlyConsequently

CoESi|m(α, β) = σi

(√
1− ρ2imφ (Φ

−1(β))

β
+

ρimφ(Φ(α))

α

)
− µi,

D Online Apendix

D.1 Cleaning process of the initial database

There are two types of cleaning processes in the data downloaded from the confidential

financial statements. The first one concerns those funds which, due to its redemption

policy or idiosyncratic features, can bias the results of the study. The second one deals

with those funds within the scope for which not enough information is gathered from

the ISINs of the assets in their portfolios. This lack of information comes from the

fact that some funds are investing in other funds and, hence, it is difficult to track the

exposure to the credit quality, sector or country of the final assets held. The ownership

link between funds creates an interesting transmission channel of contagion. However,

the analysis of this link is out of the scope of this article. This study focuses on the

systemic risk arising from the liquidity mismatch. From the funds that meet these two

cleaning criteria, we focus on the funds that have been active for the period 2009-2020.

In regard to the fund styles which hold a particular redemption policy, the following

types of funds are excluded from the analysis:

1. Guaranteed funds have large redemption costs unless the withdrawal is produced

at certain dates known as liquidity windows. Taking into account the redemption

policy of this type of funds, it is expected to find a pattern of redemptions that

differs from the remainder open-end funds. The inclusion of guaranteed funds can

generate distortions in the estimation of the parameters of the model.
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B Online Appendix

B.1	 Cleaning	process	of	the	initial	database

There are two types of cleaning processes in the data downloaded from the confi-

dential financial statements. The first one concerns those funds which, due to its 

redemption policy or idiosyncratic features, can bias the results of the study. The 

second one deals with those funds within the scope for which not enough information 

is gathered from the ISINs of the assets in their portfolios. This lack of informa-

tion comes from the fact that some funds are investing in other funds and, hence, it 

is difficult to track the exposure to the credit quality, sector or country of the final 

assets held. The ownership link between funds creates an interesting transmission 

channel of contagion. However, the analysis of this link is out of the scope of this 

article. This study focuses on the systemic risk arising from the liquidity mismatch. 

From the funds that meet these two cleaning criteria, we focus on the funds that 

have been active for the period 2009-2020.

In regard to the fund styles which hold a particular redemption policy, the following 

types of funds are excluded from the analysis:

i)  Guaranteed funds have large redemption costs unless the withdrawal is pro-

duced at certain dates known as liquidity windows. Taking into account the 

redemption policy of this type of funds, it is expected to find a pattern of re-

demptions that differs from the remainder open-end funds. The inclusion of 

guaranteed funds can generate distortions in the estimation of the parameters 

of the model.

ii)  Passively managed funds with a target return have a redemption policy similar 

to that of guaranteed funds and have been excluded for the same reasons.

iii)  Funds that pay dividends are also excluded because they generate distortions 

consequence of the effect of the profit sharing on the NAV of the fund. Moreo-

ver, these payments also condition the redemption behaviour of investors.

iv)  Side pockets and Fund of Hedge Funds (FHF) are deleted from our original 

sample because their particular features, which are not representative of the 

Spanish investment fund sector.

v)  Funds with a time series shorter than 6 months and an AuM below €1.5 mil-

lion are also removed because low AuM could generate flows, measured as a 

ratio of the assets of the fund, which are extremely high and the flows pattern 

could be erratic when funds are recently created.

Concerning portfolio disclosure, only those funds for which at least a 60% of its 

AuM can be tracked are considered, i.e. their investment in other funds is lower than 

40% of their AuM.
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B.2	 Fund	categories

Funds in the sample are classified into one of the following eight business models:

• Bond funds.

	 –	 	Sovereign bond funds: Those bond funds which hold more than 40% of 
their portfolio in sovereign bonds.

  0  Wholesale sovereign bond funds (WB): Those sovereign bond funds 
whose investors holding more than €150,000 represent at least a 50% of 
the fund AuM.

  0 Retail sovereign bond funds (RB).

	 –	 	Corporate bond funds: Those bond funds which hold more than 60% of their 
portfolio in corporate bonds.

  0 Investment grade corporate bond funds (IG).

  0  High-yield corporate bond funds (HY): Those corporate bond funds which 
hold more than 20% of their corporate bond share in bonds with a credit 
quality below BBB rating. 

	 –	 	Mixed bond funds (MX): Those bond funds that do not meet any of the pre-
vious criteria to be categorised as sovereign or corporate bond funds. 

• Stock funds.

	 –	 	Wholesale stock funds (WS): Those stock funds whose investors holding 
more than €150,000 euros represent at least a 50% of the fund AuM.

	 –	 Retail stock funds (RS).

• Other funds (OT): This category includes absolute return funds and global funds. 
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