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Abstract

This paper analyses the implementation and calibration of the Heston Stochastic 
Volatility Model. We first explain how characteristic functions can be used to esti-
mate option prices. Then we consider the implementation of the Heston model, 
showing that relatively simple solutions can lead to fast and accurate vanilla option 
prices. We also perform several calibration tests, using both local and global optimi-
zation. Our analyses show that straightforward setups deliver good calibration re-
sults. All calculations are carried out in Matlab and numerical examples are included 
in the paper to facilitate the understanding of mathematical concepts.

Keywords: Stochastic volatility, Heston, Black-Scholes biases, calibration, character-
istic functions.

JEL Classification: G13, C51, C52, C61, C63.
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1. Introduction 

The Black and Scholes (BSM) model provides a coherent framework for pricing Eu-

ropean options. However, this method is based on several assumptions that are not 

representative of the real world. In particular, the BSM model assumes that volatil-

ity is deterministic and remains constant through the option’s life, which clearly 

contradicts the behavior observed in financial markets. While the BSM framework 

can be adapted to obtain reasonable prices for plain vanilla options, the constant 

volatility assumption may lead to significant mispricings when used to evaluate op-

tions with non-conventional or exotics features. 

During the last decades several alternatives have been proposed to improve volatil-

ity modelling in the context of derivatives pricing. One of such approaches is to 

model volatility as a stochastic quantity. By introducing uncertainty in the behavior 

of volatility, the evolution of financial assets can be estimated more realistically. In 

addition, using appropriate parameters, stochastic volatility models can be calibrat-

ed to reproduce the market prices of liquid options and other derivatives contracts. 

One of the most widely used stochastic volatility model was proposed by Heston in 

1993. The Heston model introduces a dynamic for the underlying asset which can 

take into account the asymmetry and excess kurtosis that are typically observed in 

financial assets returns. It also provides a closed-form valuation formula that can be 

used to efficiently price plain vanilla options. This will be particularly useful in the 

calibration process, where many option repricings are usually required in order to 

find the optimal parameters that reproduce market prices.

In this paper we analyze the valuation of financial options using the Heston model. 

Our aim is to illustrate the use of the model with an emphasis on the implementa-

tion and calibration. Section 2 presents the valuation framework and explains how 

characteristic functions can be used to estimate option prices. Section 3 introduces 

the Heston model and discusses the implementation of its closed-form solution. Fi-

nally, Section 4 analyzes the calibration problem, considering both local and global 

optimization methods. 

For all relevant sections, generic and ready-to-use Matlab codes have been devel-

oped and numerical examples are provided in order to illustrate the use of the Mat-

lab routines.
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2. From Characteristic Functions to Option Prices

A considerable amount of research has been recently devoted to analyze the use of 
characteristic functions in option’s valuation. The rationale is that when you go be-
yond the classical BSM framework, the underlying stochastic processes that are 
used to calculate option values have characteristic functions which are simpler and 
more tractable than their density functions. Therefore, in many sophisticated mod-
els, it is easier to work with characteristics functions instead of using density func-
tions.

2.1 The General Valuation Framework

When markets are complete and arbitrage-free, option values can be calculated as 
the present value of their expected payoff under the risk-neutral measure

   V0 = e
−rT EQ H (St )⎡⎣ ⎤⎦  (2.1)

where V0  is the option value at time t  = 0, r  is the risk free rate, T  is the time to 
maturity and H (St )  is the option payoff. In order to use (2.1), we first need to 
specify the dynamics of the price process St . In particular, since we are working 
with expectations, we should consider the probability distribution of St  at (poten-
tially) different times, as required by each option payoff. 

In the classical framework, the expectation above is obtained by means of the risk-
neutral density. For instance, the payoff of a European call with strike K  and expi-
ration date T  is given by H (St ) = (ST − K )

+ . Consequently, its value at time t  = 
0 is

   C0 = e
−rT (ST − K )

+

0

∞

∫ q(ST )dST  (2.2)

where q(ST )  is the risk-neutral density of the underlying asset St  at the terminal 
date T . The problem with (2.2) is that there are many price processes for which the 
density function q(ST )  is not available in a closed-form or is difficult to obtain. 
However, if we work with the logarithm of the underlying asset price, there are 
many of such price processes with both simpler and analytically tractable character-
istic functions. 

Characteristic functions exhibit a one-to-one relationship with density functions. In 
particular, the characteristic function of a given stochastic process X , is the Fourier 
transform of its probability density function

   ψ(w) = E[eiwX ]= eiwx f (x)dx
−∞

∞

∫  (2.3)



An Analysis of the Heston Stochastic Volatility Model: Implementation and Calibration using Matlab 13

Therefore, by applying the Fourier Inversion theorem, we can recover the density 
function of the process X  in terms of its characteristic function 

   f (x) = 1
2π

e−iwxψ(w)dw
−∞

∞

∫  (2.4)

Given this relationship, all the probability evaluations that are required to calculate 
options values can be also computed using characteristic functions. 

2.2 Valuing a European Call through Characteristic Functions

Following the reasoning in Heston (1993), the value of a European call option can 
be obtained by using a probabilistic approach

   C0 = S0  Π1 − e
−rT K  Π2  (2.5)

where Π1  and Π2  are two probability-related quantities. Specifically, Π1  is the 
option delta and Π2  is the risk-neutral probability of exercise P(ST > K ) . Instead 
of using density functions, these probabilities can be computed via characteristic 
functions as follows (proof in Appendix A): 

   Π1 =
1
2
+
1
π

Re
e−iwln(K )ψlnST (w− i)
iwψlnST (−i)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

∞

∫ dw  (2.6)

   Π2 =
1
2
+
1
π

Re
e−iwln(K )ψlnST (w)

iw

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

∞

∫ dw  (2.7)

Therefore, starting with the characteristic function of the log-price ψlnST (w) , we 
can estimate the price of a European call option by first calculating the probabilities 
(2.6) and (2.7) and then substituting their values in (2.5). This method presents two 
main advantages: 

–  Generality: This approach can be applied for any underlying price process St  
whose characteristic function is known. 

–  Semi-analytical solution: The integrands in (2.6) and (2.7) should be evaluated 
numerically. However, they are smooth functions that decay rapidly and can 
be evaluated efficiently using appropriate integration routines1. This lead to 
numerical implementations that can value plain vanilla options in a fraction of 
a second2.

1 See Kahl and Jäckel (2005) or Schmelzle (2010).

2 For example, using the Matlab’s implementation proposed in this paper, the computational times re-

quired for pricing a European call option are 0.003087 seconds in the BSM model and 0.004866 seconds 

in the Heston model.



14 Comisión Nacional del Mercado de Valores

2.3 An Application to the Black and Scholes Model 

Before moving into the Heston model, we will apply the characteristic function 
method to value a call option under the BSM framework. The risk-neutral dynamics 
of the underlying asset in BSM are described by a Geometric Brownian Motion 

   dSt = rStdt +σ StdWt  (2.8)

where St  is the price of the underlying asset at time t , r  is the risk free rate, σ  is 
the volatility of the underlying returns, and Wt  is a Weiner process. Using stochas-
tic calculus, equation (2.8) can be easily solved to yield 

   St = S0e
(r− 12σ

2 )t +σ t Z
 (2.9)

where Z  is the standard normal distribution. Therefore, the distribution of St  is 
lognormal, while ln(St )  is normally distributed. In particular, the risk-neutral evo-
lution of ln(St )  is normally distributed with mean ln(S0 )+ (r −0.5σ

2 )t  and 
variance σ 2t.  This means that, in practice, it is easier to work with the process
ln(St )  rather than using St  directly.

Black and Scholes Characteristic Function

The characteristic function of a normal random variable is given by

   ψ(w) = eiw(mean)−
1
2w

2 (variance)
 (2.10)

Therefore, the characteristic function of ln(St )  can be easily calculated as 

   ψln(St )
BSM (w) = eiw[ln(S0 )+(r−0.5σ

2 )t ]−0.5w2σ 2t
 (2.11)

Once we have the characteristic function, the next step is to estimate Π1  and Π2 . 
These probabilities can be computed by numerical integration or, alternatively, Eu-
ler’s formula ( eix = cos x+ isin x ) could be applied to further expand (2.6) and 
(2.7), and in order to obtain more specific expressions for Π1  and Π2  under the 
BSM framework. 

Since our aim is to gain a better understanding of the general characteristic function 
approach, we will compute Π1  and Π2  directly using (2.6) and (2.7). We will repeat 
this procedure in section 3, where we will use ψln(St )

Heston(w) instead of ψln(St )
BSM (w)  in 

order to calculate the value of a European call under the Heston model.

Function 1 below (chfun_norm.m) shows how to compute the characteristic function 
of the BSM model in Matlab, while function 2 (call_bsm_cf.m) calculates the call 
value based on equations (2.5) to (2.7). In addition, example 1 illustrates the practi-
cal use of these functions by pricing an individual call option. As a reference, within 
the BSM framework, the estimated value of a call option with parameters S0 = 100, 

K = 100, σ = 0.15, r = 0.02 and t = T = 1 is C0 = 8.9160. As the example shows, us-
ing the characteristic function approach, we obtain the same call value. 



An Analysis of the Heston Stochastic Volatility Model: Implementation and Calibration using Matlab 15

Matlab Function 1: Characteristic function of the Black-Scholes model (chfun_
norm.m)

function y = chfun_norm(s0, v, r, t, w)

% Characteristic function of BSM. 
% y = chfun_norm(s0, v, r, t, w)

% Inputs: 
% s0: stock price
% v: volatility 
% r: risk-free rate
% t: time to maturity
% w: points at which to evaluate the function

mean =log(s0)+ (r-v^2/2)*t; % mean
var = v^2*t; % variance
y = exp((i.*w*mean)-(w.*w*var*.5));  % characteristic function of log (St) evaluat-

ed at points w
end

Matlab Function 2: Call value in the Black-Scholes model (call_bsm_cf.m) 

function y = call_bsm_cf(s0, v, r, t, k)

% BSM call value calculated using formulas 2.5 to 2.7
% y = call_bsm_cf(s0, k, v, r, t, w )

% Inputs: 
% s0: stock price
% v: volatility 
% r: risk-free rate
% t: time to maturity
% k: option strike
% chfun_norm: Black-Scholes characteristic function

% 1st step: calculate pi1 and pi2 
% Inner integral 1
int1 = @(w,s0,v,r,t,k) real(exp(-i.*w*log(k)).*chfun_norm(s0,v,r,t,w-i)./(i*w.*chfun_
norm(s0, v, r, t, -i))); 
int1 = integral(@(w)int1(w,s0,v,r,t,k),0,100); %numerical integration
pi1 = int1/pi+0.5;

% Inner integral 2
int2 = @(w,s0,v,r,t,k) real(exp(-i.*w*log(k)).*chfun_norm(s0, v, r, t, w)./(i*w)); 
int2 = integral(@(w)int2(w,s0, v, r, t, k),0,100); %numerical integration
pi2 = int2/pi+0.5; % final pi2

% 2nd step: calculate call value
y = s0*pi1-exp(-r*t)*k*pi2;
end 
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Numerical Example 1: Call option valuation using the Black-Scholes model

% function y = call_bsm_cf(s0, v, r, t, k)

>> call_bsm_cf(100, 0.20, 0.02, 1, 100)

ans = 8.9160
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3. The Heston Model

In 1993, Heston proposed a stochastic volatility model where the underlying asset 
behavior was characterized by the following risk-neutral dynamics 

   

dSt = rStdt + Vt StdWt
1

dVt = a(V −Vt )dt +η Vt dWt
2

dWt
1dWt

2 = ρdt

 (3.1)

The parameters used in the model are the following: 

–  St  is the price of the underlying asset at time t

–  r  is the risk free rate

–  Vt  is the variance at time t

–  V  is the long-term variance

–  a  is the variance mean-reversion speed

–  η  is the volatility of the variance process

–  dWt
1, dWt

2
 are two correlated Weiner processes, with correlation coefficient

ρ

Therefore, under the Heston model, the underlying asset follows an evolution pro-
cess which is similar to the BSM model, but it also introduces a stochastic behavior 
for the volatility process. In particular, Heston makes the assumption that the asset 
variance Vt  follows a mean reverting Cox-Ingersoll-Ross process.

Stochastic volatility models tackle one of the most restrictive hypotheses of the BSM 
model; namely, the assumption that volatility remains constant during the option´s 
life. Observing financial markets it can be easily seen that volatility is not a constant 
quantity. This is also reflected in the different implied volatility levels at which op-
tions with different strikes and maturities trade in the market, which collectively 
give rise to the so-called volatility surface. 

Among volatility models, Heston’s dynamics exhibit several desirable properties. 
First, it models volatility as a mean-reverting process. This assumption is consistent 
with the behavior observed in financial markets. If volatility were not mean-revert-
ing, markets would be characterized by a considerable amount of assets with volatil-
ity exploding or going near zero. In practice, however, these cases are quite rare and 
generally short-lived. 
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Second, it also introduces correlated shocks between asset returns and volatility. 
This assumption allows modelling the statistical dependence between the underly-
ing asset and its volatility, which is a prominent feature of financial markets. For 
instance, in equity markets, volatility tends to increase when there are high drops in 
equity prices, and this relationship may have a substantial impact in the price of 
contingent claims.

Consequently, the Heston model provides a versatile modelling framework that can 
accommodate many of the specific characteristics that are typically observed in the 
behavior of financial assets. In particular, the parameter η  controls the kurtosis of 
the underlying asset return distribution, while ρ  sets its asymmetry. 

However, as expected, these benefits come at the expense of higher complexity. 
Compared with BSM, the implementation of the Heston model requires more so-
phisticated mathematics and it also involves a more challenging process to calibrate 
the model to fit market prices.

3.1 Closed-form Solution of the Heston Model

One of the main advantages of the Heston model is that the price of European op-
tions can be estimated using a quasi-closed form valuation formula. 

The development of the Heston formula follows the general approach that we ex-
plained in section 2. As we mentioned, the present value of a European call option 
can be estimated using a probabilistic approach

   C0 = S0  Π1 − e
−rT K  Π2  (3.2)

where Π1  and Π2  are two probability-related quantities. Therefore, the call value 
under the Heston model can computed by first obtaining Π1  and Π2  using the 
dynamics described in (3.1) and then substituting their values in equation (3.2). 
However, the difficulty arises when we try to calculate these probabilities under the 
Heston dynamics, since the transition densities for this model are not available in a 
closed-form. Alternatively, as we showed earlier, Π1  and Π2  can also be obtained 
using characteristic functions. 

Heston Characteristic Function 

In this section we start with the Heston characteristic function proposed by Gath-
eral (2006), but we also introduce an additional modification. In particular, the char-
acteristic function that we will use through the paper is the following: 
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ψln(St )
Heston(w) = e[C (t ,w)V+D(t ,w)V0+iwln(S0e

rt )]

C(t,w) = a r− ⋅ t −
2
η2
ln 1− ge

−ht

1− g

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

D(t,w) = r−
1− e−ht

1− ge−ht

r± =
β ± h
η2

; h = β 2 −4αγ

g = r−
r+

α = −
w2

2
−
iw
2
; β = a− ρηiw ; γ = η

2

2

 (3.3)

Our approach differs from Gatheral (2006) in that we apply the characteristic func-
tion method based on the process ln(St ) , instead of ln(St / K ) . Using this ap-
proach we obtain an expression for ψln(St )

Heston(w)  that can be directly used within the 
general pricing framework presented in section 2. This is in contrast with the for-
mulation used in Heston (1993) and later in Gatheral (2006), where two distinct 
functions are used to calculate Π1  and Π2 . Appendix B shows the equivalence of 
our approach to the methodology provided by Gatheral (2006) 

It should be noted that the characteristic function presented in (3.3) already incor-
porates the risk-neutral behavior of the process ln(St ) . A discussion of the risk-
neutral paradigm in the Heston model is included in Appendix C.

3.2  Model Implementation 

Although ψln(St )
Heston(w)  may have a complicated appearance, its implementation is 

quite straightforward. In particular, once we have estimated appropriate values for 
the model parameters V0 ,V ,a,η,ρ{ } , the Heston characteristic function can be 
easily evaluated using numerical software. Function 3 (chfun_heston.m) shows how 
to compute the Heston characteristic function in Matlab. 

After obtaining ψln(St )
Heston(w) , the characteristic function can be substituted in (2.6) 

and (2.7) to calculate Π1  and Π2 . Using these probabilities, equation (3.2) will pro-
vide the estimated value of a European call under the Heston Model. Function 4 
(call_heston_cf.m) performs the calculations based on such equations. 

Example 2 illustrates how to use these functions to value a call option where S0 = 1, 
K = 2, V0 = 0.16, V = 0.16, a = 1, η = 2, ρ = -0.8 and t = T = 10. Kahl and Jäckel 
(2005) showed that the estimated value for this option under the Heston model is 

C0 = 0.0495. As the example shows, our implementation yields the same call value. 

It is also relevant to note that some authors compute the price of vanilla options in 
the Heston model using the Fast Fourier Transformation (FFT). This approach has 



20 Comisión Nacional del Mercado de Valores

the advantage that it can provide simultaneously the prices of options with different 
strikes and, therefore, it employs lower computational time3. However, the FFT ap-
proach introduces an additional parameter and its implementation requires modify-
ing the general valuation formulas presented in section 2. Consequently, since our 
aim is to develop practical intuition on the Heston model, we will not employ this 
approach.

3 See Carr and Madam (1998).

Matlab Function 3: Characteristic function of the Heston model (chfun_
heston.m ) 

function y = chfun_heston(s0, v0, vbar, a, vvol, r, rho, t, w);

% Heston characteristic function. 
% Inputs: 
% s0: stock price
% v0: initial volatility (v0^2 initial variance)
% vbar: long-term variance mean
% a: variance mean-reversion speed 
% vvol: volatility of the variance process
% r : risk-free rate 
% rho: correlation between the Weiner processes for the stock price and its variance
% w: points at which to evaluate the function
% Output:
% Characteristic function of log(St) in the Heston model

% Interim calculations
alpha = -w.*w/2 - i*w/2;
beta = a - rho*vvol*i*w;
gamma = vvol*vvol/2;
h = sqrt(beta.*beta - 4*alpha*gamma);
rplus = (beta + h)/vvol/vvol;
rminus = (beta - h)/vvol/vvol;
g=rminus./rplus;

% Required inputs for the characteristic function 
C = a * (rminus * t - (2 / vvol^2) .* log((1 - g .* exp(-h*t))./(1-g)));
D = rminus .* (1 - exp(-h * t))./(1 - g .* exp(-h*t));

% Characteristic function evaluated at points w
y = exp(C*vbar + D*v0 + i*w*log(s0*exp(r*t))); 
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Matlab Function 4: Call price in the Heston model (call_heston_cf.m)

function y = call_heston_cf(s0, v0, vbar, a, vvol, r, rho, t, k)

% Heston call value using characteristic functions.
% y = call_heston_cf(s0, v0, vbar, a, vvol, r, rho, t, k)

% Inputs: 
% s0: stock price
% v0: initial volatility (v0^2 initial variance)
% vbar: long-term variance mean
% a: variance mean-reversion speed
% vvol: volatility of the variance process
% r: risk-free rate 
% rho: correlation between the Weiner processes of the stock price and its variance
% t: time to maturity
% k: option strike
% chfun_heston: Heston characteristic function

% 1st step: calculate pi1 and pi2 
 % Inner integral 1
int1 = @(w, s0, v0, vbar, a, vvol, r, rho, t, k) real(exp(-i.*w*log(k)).*chfun_heston(s0, 
v0, vbar, a, vvol, r, rho, t, w-i)./(i*w.*chfun_heston(s0, v0, vbar, a, vvol, r, rho, t, 
-i))); % inner integral1
int1 = integral(@(w)int1(w,s0, v0, vbar, a, vvol, r, rho, t, k),0,100); % numerical 
integration
pi1 = int1/pi+0.5; % final pi1

 % Inner integral 2:
int2 = @(w, s0, v0, vbar, a, vvol, r, rho, t, k) real(exp(-i.*w*log(k)).*chfun_heston(s0, 
v0, vbar, a, vvol, r, rho, t, w)./(i*w)); 
int2 = integral(@(w)int2(w,s0, v0, vbar, a, vvol, r, rho, t, k),0,100);int2 = real(int2); 
pi2 = int2/pi+0.5; % final pi2

% 2rd step: calculate call value
y = s0*pi1-exp(-r*t)*k*pi2;
end

Numerical Example 2: Call valuation in the Heston model.

% function y = call_heston_cf(s0, v0, vbar, a, vvol, r, rho, t);

>> call_heston_cf(1, 0.16, 0.16, 1, 2, 0, -0.8, 10, 2)

ans = 0.0495
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4. Calibration to Market Prices

Before using a pricing model we should ensure that it can produce accurate results 
for the options that are already traded in the market. Availability of closed-form 
solutions is particularly useful in the calibration process. Typically, when we seek to 
obtain the optimal model parameters that are able to reproduce market prices, we 
need to perform a substantial number of plain vanilla options repricings. Conse-
quently, accurate and efficient pricing formulas are required in order to obtain reli-
able results within a reasonable timeframe.

4.1 Calibration Procedure in the Heston Model 

The goal of calibration is to find the parameter set that minimizes the distance be-
tween model predictions and observed market prices. In particular, using the risk-
neutral measure, the Heston model has five unknown parameters Ω = V0 ,V ,a,η,ρ{ }
. Therefore, by calibrating these parameters values, we seek to obtain an evolution 
for the underlying asset that is consistent with the current prices of plain vanilla 
options.

In order to find the optimal parameter set we need to (i) define a measure to quan-
tify the distance between model and market prices; and (ii) run an optimization 
scheme to determine the parameter values that minimize such distance. A simple 
and straightforward approach is to minimize the mean sum of squared differences 

   G(Ω) = 1
N
Ci

Ω(Ki ,Ti )−Ci
Mkt (Ki ,Ti )⎡

⎣
⎤
⎦
2

i=1

N

∑  (4.1)

Where Ci
Ω(Ki ,Ti )  are the option values using the parameter set Ω , and 

Ci
Mkt (Ki ,Ti )  are the market observed option prices.

As shown in Bin (2007), the calibration process presents the problem that the objec-
tive function is not necessarily convex and may exhibit several local minima. This 
complicates the estimation of the optimal parameter set 

⌢
Ω , since the solution at-

tained by local optimization might be dependent on the initial guess Ω0.  Therefore, 
a good initial guess might be critical and, even then, in some cases the convergence 
to the global optimum is not guaranteed. 

The obvious solution is to employ global optimization. However, global optimizers 
generally lack the mathematical tractability of local ones, and also require substan-
tially higher computational times. Since both methods have advantages and disad-
vantages, we will explore both approaches. 
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4.2 Local Optimization

When a function exhibits several minima, local optimizers face the problem that 
once a solution has been found, we cannot be sure whether such solution is the best 
available. In other words, we cannot distinguish if the solution is a local minimum 
or a global one, or consequently, if we have reached a local solution, there is no easy 
way to measure how far we are from the global one. 

An alternative to tackle this problem is to define a criterion for acceptable solutions. 
If we select a priori which solutions can be deemed acceptable, we can at least en-
sure that any accepted solution will be consistent with our tolerance bounds. Con-
versely, if we found a non-acceptable solution, we can run the algorithm with a dif-
ferent starting point and keep searching for solutions that comply with our criteria.

In our tests, we will require that the difference between model and market prices 
falls on average within the observed bid-ask spreads. Therefore, we will consider the 
following set of acceptable solutions 

  
1
N

Ci
Ω̂(Ki ,Ti )−Ci

Mkt (Ki ,Ti ) ≤
i=1

N

∑ 1
2N

bid i −aski⎡⎣ ⎤⎦
i=1

N

∑  (4.2)

where Ci
Ω̂(Ki ,Ti )  are the model prices with the optimal parameter set 

⌢
Ω , 

Ci
Mkt (Ki ,Ti )  are the mid-market option prices, and bid i / aski  are the market ob-

served bid and ask prices. 

As a local optimizer we will use the Matlab lsqnonlin function (least-squares non-
linear), which implements a trust-region reflective minimization algorithm4. In ad-
dition, we will also define lower and upper bounds for the optimal parameters. 
These thresholds are included in the calibration in order to avoid possible solutions 
that, while mathematically feasible, are not acceptable in an economic sense. 

In particular, we will use the following bounds:

–  Long-term variance and initial variance: Acceptable solutions for variance 
levels should take a possible value. However, given its mean-reversion, the 
volatility of most financial asset rarely reaches levels beyond 100%. Conse-
quently, we will use bounds of 0 and 1 for both V  and V0 . 

–  Correlation: Statistical correlation takes values from -1 to 1. As previously 
mentioned, the correlation between volatility and stock prices tends to be neg-
ative. However, positive correlations might also be possible in particular cases. 
Therefore, the full range of acceptable solutions will be used in the calibration. 

–  Volatility of variance: Being a volatility, this parameter should exhibit positives 
values. However, the volatility of financial assets may change dramatically in 
short time periods (i.e. the volatility itself is very volatile). Consequently, high 
upper bounds are required for this parameter. In order to avoid potential restric-
tions, a broad set of solutions, from 0 to 5, will be used in the calibration.

4 See Yuan (1999) for an overview on the use of trust-region algorithms for solving non-linear problems.
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–  Mean-reversion speed: To ensure mean-reversion the parameter a  should 
take positive values (negative values will cause mean aversion). However, we 
have not found clear evidence regarding which upper value could be an appro-
priate bound. Consequently, instead of fixing an upper level, maximum values 
for a  will be dynamically set in the calibration as a by-product of the non-
negativity constraint. 

–  Non-negativity constraint: In addition to the parameter bounds, another con-
dition is required to ensure that the variance process in the Heston model does 
not reach zero or negative values. In this regard, Feller (1951) shows that a 
constraint 2aV −η2 > 0  (generally known as the Feller condition) guarantees 
that the variance in a CIR process is always strictly positive5. 

The option datasets that we use in the calibration are shown in Appendix D. Using 
the bounds described above, the implementation of the local calibration algorithm 
is shown in script 1 (Heston_calibration_local.m). In addition, function 5 (costf.m) 
provides the objective function required in script 1. 

For dataset D1, the results obtained with local optimization are shown in table 1. 

Local optimization results TABLE 1

Optimal parameters 

V0 V η ρ a

0.0989 0.3407 0.7068 -0.2949 0.7331

Model predicted values 

Option  
id.

Mid-market  
price

Model  
price

Difference  
(abs)

Within  
bid-ask?

1 56.90 56.01 0.886 yes

2 36.30 35.57 0.728 yes

3 19.60 19.62 0.018 yes

4 9.45 9.26 0.185 yes

5 4.30 3.84 0.460 no

6 63.20 63.26 0.059 yes

7 44.90 45.52 0.620 no

8 30.55 31.07 0.519 no

9 20.05 20.21 0.157 yes

10 12.50 12.69 0.188 yes

11 77.55 77.16 0.389 yes

12 61.45 61.87 0.420 yes

13 48.90 48.85 0.049 yes

14 38.45 38.10 0.349 yes

15 29.50 29.47 0.026 yes

5 This condition is particularly useful in certain Monte Carlo discretization schemes. In the calibration, the 

non-negativity constraint has been implemented by introducing an upper bound in the acceptable val-

ues of 2aV −η2 . Since V  and η2  have their own range of acceptable values, this condition implicitly 

restricts the acceptable values of a  to those that comply with the non-negativity constraint.



An Analysis of the Heston Stochastic Volatility Model: Implementation and Calibration using Matlab 25

As table 1 shows, the calibrated Heston model provides a good match for most trad-
ed options. The model predicted value for 12 out of 15 options falls within the mar-
ket bid-ask spread. In addition, when evaluated in terms of our acceptance criterion, 
the model's average distance from the mid-market price is 0.3369, which is lower 
than the average deviation in the bid-ask spreads (0.6933). The computational time 
required for the local calibration is 6.5 seconds. 

However, table 1 also highlights a limitation of stochastic volatility models: these 
models may have problems to match the prices of out-of-the-money (OTM) options 
with short maturities (see, in particular, option n. 56). More often than not, diffusion 
processes cannot generate the substantial underlying asset movements that are rou-
tinely implied by the prices of short-dated OTM options. Price jumps are generally 
perceived as one of the main drivers behind the high quotes for this type of options. 
Consequently, adding jumps to the underlying price process may be seen as a pos-
sible way forward which may improve the overall fit to market prices.

4.3 Global Optimization 

The main advantage of global optimization is that it does not exhaust its search on 
the first minimum attained. Generally, global optimizers include stochastic move-
ments in their search pattern, which make it possible to overcome local minimums 
and continue searching even if a potential solution has already been found.

However, the use of stochastic methods also entails certain drawbacks. The mathe-
matical properties of these algorithms are less tractable than those of local (deter-
ministic) ones. In addition, despite its name, their convergence to the global mini-
mum is not guaranteed. In fact, since the exit sequence is determined stochastically, 
the algorithm might decide to terminate early and, in some cases, the solution at-
tained might underperform a local search. All in all, even if global optimization is 
theoretically more powerful, when working with functions of unknown shape, it is 
not easy to establish ex ante which calibration method will perform better. 

In order to test the results of global optimization we employ the Simulated Anneal-
ing framework (SA). This algorithm conducts a guided search, where new iterac-
tions are generated by taking into account previous information but also introduc-
ing randomization. Initially, the algorithm starts with high tolerance for random 
shocks, and different regions are surveyed during the first phase. As a consequence, 
even if a minimum is found, the algorithm keeps searching for better solutions. As 
time evolves, the algorithm decreases its tolerance until it eventually settles in the 
best optimum attained. 

In particular, we will use the Matlab function asamin, which was developed by Prof. 
Shinichi Sakata. This function implements an Adaptive Simulated Annealing (ASA), 
dynamically adjusting its tolerance for random shocks. The ASA framework has 
been shown by Goel and Stander (2009) to provide good results among a range of 
different global optimizers. 

6 Individual contract details are included in Appendix D.
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For comparability, we will use the same parameter bounds that we defined in sec-
tion 4.2. The implementation of the asamin function is shown in script 2 (Heston_
calibration_global.m), while the required cost function is implemented in function 
6 (costf_2.m). 

Running script 2, the optimal results obtained for dataset D1 are shown in table 2.

Global optimization results TABLE 2

Optimal parameters 

V0 V η ρ a

0.0983 0.2957 0.7544 -0.2919 0.9626

Model predicted values 

Option  

id.

Mid-market  

price

Model  

price

Difference  

(abs)

Within  

bid-ask?

1 56.90 56.05 0.853 yes

2 36.30 35.58 0.716 yes

3 19.60 19.59 0.008 yes

4 9.45 9.23 0.220 yes

5 4.30 3.83 0.470 no

6 63.20 63.30 0.103 yes

7 44.90 45.55 0.647 no

8 30.55 31.08 0.531 no

9 20.05 20.21 0.165 yes

10 12.50 12.70 0.203 yes

11 77.55 77.13 0.416 yes

12 61.45 61.85 0.403 yes

13 48.90 48.85 0.055 yes

14 38.45 38.10 0.346 yes

15 29.50 29.48 0.017 yes

As table 2 shows, the optimal parameters values under ASA are slightly different to 
those of local calibration. However, there are not significant divergences in the over-
all results. Under global calibration 12 out of 15 model values are within the ob-
served bid-ask spreads, and the average distance to the mid-market price is 0.3436. 
Therefore, the ASA solution is also acceptable according to our criterion and its 
quality is similar to the results obtained through Matlab’s lsqnonlin. The main draw-
back of ASA its substantially higher computational time (245.1 seconds in ASA vs 
6.5 seconds in Matlab’s lsqnonlin). 
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4.4 More Calibration Exercises

Based on dataset D1 both ASA and Matlab’s lsqnonlin yield similar solutions. How-
ever, the complexity of multidimensional non-linear optimization makes it difficult 
to draw conclusions from a single comparison.

In order to obtain further evidence, we carried out two additional calibration exer-
cises. First, we applied both methods to an option dataset which, a priori, should be 
easier to calibrate. In particular, all the options in dataset D2 have relatively broad 
bid-ask spreads and their implied volatilities are also relatively stable. Second, we 
also tested a potentially more challenging dataset (D3). In this case, the number of 
options was doubled and instruments with shorter maturities and divergent im-
plied volatilities were included in the calibration. 

Table 3 summarizes the calibration results for these datasets.

Calibration results: datasets D2 and D3 TABLE 3

Matlab’s lsqnonlin ASA (asamin)

N. of 

options

Elapsed 

time

Within 

bid-ask

Average 

distance 

Elapsed 

time

Within

bid-ask

Average 

distance 

Dataset D2 15 4.1 sec 15 of 15 0.3903 258.0 sec 15 of 15 0.4235

Dataset D3 30 5.2 sec 24 of 30 0.0197 562.4 sec 24 of 30 0.0200

In dataset D2, both calibration methods produce good results. All the model pre-
dicted values are within the observed bid-ask spread. In terms of the distance from 
the mid-market prices, Matlab’s lsqnonlin performs slightly better, with an average 
distance of 0.3903, against 0.4235 in ASA. In addition, as expected, the ASA algo-
rithm takes substantially longer to reach the optimum. 

Calibration gets more difficult in dataset D3. Although both methods provide ac-
ceptable solutions7, the number of options within their observed bid-ask spread 
falls to 24 out of 30. However, even in these challenging conditions, the comparison 
between both methods exhibits a similar pattern, with Matlab’s lsqnonlin reaching 
slightly better solution (average distance 0.0197 vs 0.0200) and ASA requiring sig-
nificantly longer computing times. 

Based on these exercises, we can conclude that Matlab’s lsqnonlin provides better 
calibration results, and it also employs lower computational times. However, these 
results could be conditioned by an objective function that may not be complex 
enough to exploit the ASA strengths. In particular, since typically we do not know 
whether the objective function may exhibits several local minima, a conservative 
approach will be to run both calibration approaches. The drawback is, of course, 
that a global search might not necessarily improve the results provided by a local 
one. However, the advances in computing power and numerical methods keep re-

7 The average observed deviation in the market bid-ask spreads is 0.0559.
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Matlab Function 5: Cost function for local calibration (costf.m)

function [cost] = costf(x)
global data; global finalcost;

% Compute individual differences 
% Sum of squares performed by Matlab’s lsqnonlin
for i=1:length(data)
cost(i)= data(i,5) - call_heston_cf(data(i,1),x(1), x(2), (x(5)+x(3)^2)/(2*x(2)), x(3), 
data(i,4), x(4), data(i, 2), data(i,3));
end

% Show final cost 
finalcost =sum(cost)^2
end

Script 1: Heston local calibration using Matlab’s lsqnonlin (Heston_calibration_
local.m)

% Heston calibration, local optimization (Matlab’s lsqnonlin)

% Input on data.txt
% Data = [So, t, k, r, mid price, bid, ask]
clear all
global data; global cost; global finalcost;
load data.txt

% Initial parameters and parameter bounds
% Bounds [v0, Vbar, vvol, rho, 2*a*vbar - vvol^2]
% Last bound include non-negativity constraint and bounds for mean-reversion
x0 = [.5,.5,1,-0.5,1];
lb = [0, 0, 0, -1, 0];
ub = [1, 1, 5, 1, 20];
% Optimization: calls function costf.m: 
tic; 
x = lsqnonlin(@costf,x0,lb,ub);
toc;

% Solution:
Heston_sol = [x(1), x(2), x(3), x(4), (x(5)+x(3)^2)/(2*x(2))]
x
min = finalcost

ducing the time required for global calibration. In our exercises, the running time of 
ASA was lower than 10 minutes, which for many practical applications makes it 
worth testing for potentially better solutions. 
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Script 2: Heston global calibration using ASA (Heston_calibration_global.m)

% Heston calibration, global optimization (asamin)

% Input on data.txt
% Data = [So, t, k, r, mid price, bid, ask]
clear all
global data; global cost; global finalcost;
load data.txt

% Initial parameters and parameter bounds
% Bounds [v0, Vbar, vvol, rho, 2*a*vbar - vvol^2]
% Last bound include non-negativity constraint and bounds for mean-reversion
x0 = [.5,.5,1,-0.5,5];
lb = [0, 0, 0, -1, 0];
ub = [1, 1, 6, 1, 20];

% Optimization: calls function costf_2.m: 
asamin(‘set’, ‘test_in_cost_func’, 0);
xtype = [-1;-1;-1;-1;-1];
tic; 
[f, x_opt, grad, hessian, state] = asamin (‘minimize’,’costf_2’ ,x0’,lb’,ub’, xtype) 
toc;

% Solution:
Heston_sol = [x(1), x(2), x(3), x(4), (x(5)+x(3)^2)/(2*x(2))]
x
min = finalcost

Matlab Function 6: Cost function for global calibration (costf_2.m)

function [cost flag] = costf_2(x)
global data; global finalcost; global cost; global cost_i;

% Compute individual differences 
for i=1:length(data)
cost_i(i)= data(i,5) - call_heston_cf(data(i,1),x(1), x(2), (x(5)+x(3)^2)/(2*x(2)), x(3), 
data(i,4), x(4), data(i, 2), data(i,3));
end

% Compute sum of squared differences 
cost = sum(cost_i.^2);

% Show final cost and current solution
finalcost =sum(cost)
flag = 1;
Heston_sol = [x(1), x(2), x(3), x(4), (x(5)+x(3)^2)/(2*x(2))]
end
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5. Conclusion

Stochastic volatility models tackle one of the most restrictive hypotheses of the BSM 
framework, which assumes that volatility remains constant during the option´s life. 
However, by observing financial markets it becomes apparent that volatility may 
change dramatically in short-time periods and its behavior is clearly not determinis-
tic. 

Among stochastic volatility models, the Heston model presents two main advan-
tages. First, it models an evolution of the underlying asset which can take into ac-
count the asymmetry and excess kurtosis that are typically observed (and expected) 
in financial asset returns. Second, it provides closed-form solutions for the pricing 
of European options.

Availability of closed-form valuation formulas is particularly important for the cali-
bration process. In our tests, although the objective function is not necessarily con-
vex, both local and global optimization methods provide reasonable results within a 
relatively short timeframe. However, in cases where the objective function may ex-
hibit several local minima, local optimization may underperform a global search. 
Once the model parameters have been calibrated to fit market prices, the Heston 
dynamics can be used to price other products that are not actively traded in the 
market. 

Following these results there are also two possible areas of further work. First, be-
fore using the calibrated model to price exotic products, a discretization scheme will 
be typically required in order to obtain more granular information regarding the 
underlying asset dynamics during the product´s life. This can be achieved, in most 
practical cases, by implementing a Monte Carlo simulation scheme.

Second, a step further will be to include discontinuous jumps in the underlying as-
set evolution. Adding jumps to stochastic volatility entails higher complexity, but 
also provides a potentially more realistic framework. Most jump models follow a 
characteristic function approach whose implementation is similar to the one des-
cribed here. Therefore, for interested readers, we hope that the explanations pro-
vided in this paper may help them to connect the dots in their next mathematical 
journey.
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Appendix A: Derivation of Π1  and Π2  

The proof is divided in two parts. In the first one we derive Π1  and Π2  based on 
the relationship between the cumulative density function (CDF) of a random varia-
ble X  and its characteristic function

   F(x) = 1
2
−
1
π

Re
e−iwxψX (w)

iw

⎡

⎣
⎢

⎤

⎦
⎥

0

∞

∫ dw  (A.1)

The second part is devoted to prove (A.1).

***

For the first part we follow the reasoning in Chourdakis (2008). We start with the 
value of a European call with maturity date T and strike K. In a risk-neutral context, 
the call value at t = 0 is given by 

   C0 = e
−rT EQ max(ST − K ,0)⎡⎣ ⎤⎦  (A.2)

Using x = ln(ST )  and expanding this equation we get an expression for the Euro-
pean call value that is similar to the definition in terms of Π1  and Π2  that we used 
in (2.5)

   

C0 = e rT (ex K ) f (x)dx
log K

= e rT ex f (x)dx K f (x)dx
log Klog K( )

= e rT I1 e rT KI2

 (A.3)

For a given call option, by comparing equations (2.5) and (A.3) it can be seen that 
Π2  should be equal to I2 , while Π1  should be equal to I1e

−rT / S0 . The second 
integral I2  is simply the probability of the log-stock price finishing above the log-
strike. Therefore, by applying the relationship in (A.1), this probability can be ob-
tained in terms of the characteristic function of ln(ST )  as follows

   

2 = I2

=

= P(ln ST > ln K )
1 P(ln ST ln K )

=
1
2
+

1 Re
e iwln( K )

ln ST
(w)

iw0
dw

 (A.4)

which is the definition of Π2  that we presented in (2.7).
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To derive Π1 , we multiply and divide the first integral I1  by the term ex f (x)dx
−∞

∞

∫ , 
which is also equal, in a risk-neutral context, to the capitalized spot price (i.e. erT S0 )

   

I1 = ex f (x)dx =
log K

∞

∫
ex f (x)dx

log K

∞

∫
ex f (x)dx
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∞

∫
ex f (x)dx

−∞

∞

∫

= g(x) erT S0
 

(A.5)

Working on the fraction above, we obtain an alternative integral expression for 

g(x)  as follows

   
g(x) =

ex f (x)dx
log K

∞

∫
ex f (x)dx
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∞

∫
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ex f (x)
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(A.6)

Therefore, the first integral I1  can be also expressed as 

   
I1 = e

rT S0 f *(x)
log K

∞

∫ dx
 

(A.7)

Since f *(x)  is, by construction, between 0 and 1, its Fourier transforms is given by 

   

ψ*(w) = eiwx f *(x)
−∞

∞

∫ dx = ψ(w− i)
ψ(−i)  

(A.8)

Consequently, using again the relationship in (A.1)

   

I1 = e
rT S0
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(A.9)

Finally, since Π1 = I1e
−rT / S0 , the expression for Π1  simplifies to: 

   

Π1 =
1
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(A.10)

which is the definition of Π1  that we used in (2.6)

***

The second part follows the reasoning in Kendall, Stuart and Ord (1994) and Wu 
(2007).

First we start with the integral 

   
I = eiwxψX (−w)− e

−iwxψX (w)
iw

dw
0

∞

∫
 

(A.11)

Replacing each characteristic function by its integral form, the expression above 
becomes 
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I =
eiwx e iwz dF(z) e iwx eiwz dF(z)

iw
dw

0

=
eiwxe iwz e iwxeiwz

iw0
dF(z)dw

=
eiw( x z ) e iw( x z )

iw0
dF(z)dw

 

(A.12)

Next, considering Euler’s equality sin(θ ) = (eiθ − e−iθ ) / 2i , and using θ = w(x − z)
, it can be seen that 2sin w(x − z) = (eiw(x−z ) − e−iw(x−z ) ) / i . 

Therefore, applying Fubini’s theorem and the fact that 
lim
n→∞

sin(δt) / t dt = π / 2sgn(
0

n
∫ δ)  the integral simplifies to 

   

I = 2sin w(x z)
w0

dF(z)dw

=
2sin w(x z)

w0
dwdF(z)

= sgn(x z)dF(z) =

= (F(x)+0 (1 F(x))

= 2F(x) 1
 

(A.13)

Consequently, solving for F(x)  and then substituting I  by its original definition 
yields 

   

F(x) = 1
2
+

1
2

I

=
1
2
+

1
2

eiwx
X ( w) e iwx

X (w)
iw

dw
0  

(A.14)

Finally, since the density of X  is a real-valued function, using the properties of 
Fourier transforms, ψX (w)  has conjugate symmetry and 
ψX (w)+ψX (−w)⎡⎣ ⎤⎦ / 2 = Re[ψX (w)] . Therefore, the CDF of X  can also be ex-

pressed as

   

F(x) = 1
2
+

1 eiwx
X ( w) e iwx

X (w)
2iw

dw
0

=
1
2

1 Re
e iwx

X (w)
iw0

dw
 

(A.15)

which is the definition of F(x)  that we used in (A.1).
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Appendix B:  Equivalence of our approach to 
Gatheral (2006)

The analysis of the Heston call value in Gatheral (2006) is based on the process 
xT = ln(FT / K ) , where FT  is the forward price of the underlying asset at the ma-
turity date T. Consequently, its derivation focus on the future value of the European 
call at time t =T  

   CT
Ga = K(exTΠ1 −Π2 )  (B.1)

rather than its value today. However, taking into account that the forward price is 
FT =S0e

rT , equation (B.1) becomes 

   

CT
Ga = K(eln(S0erT / K )

1 2 )

= S0e
rT

1 K 2  

(B.2)

and calculating the present value of the expression above (i.e. multiplying by e−rT
in a risk neutral context) yields the probabilistic definition of the European call 
value that we used through the paper 

   
C0 = S0Π1 − e

−rT KΠ2  
(B.3)

Next, we need to show that the definitions that we used for Π1  and Π2  are equiva-
lents to those provided by Gatheral (2006). Regarding Π2  (i.e. probability of the fi-
nal log-stock price being greater than the log-strike), the result provided in Gather-
al’s is given by 

   Π2
Ga =

1
2
+
1
π

Re e
C (T ,w)v+D(T ,w)v0+iwx

iw

⎡

⎣
⎢

⎤

⎦
⎥

0

∞

∫ dw  (B.4)

where x = ln(ST / K ) , and C(T ,w) , D(T ,w)  are defined in the same terms that 
we used in (3.3). Expanding Gatheral’s result we obtain 

   

2
Ga =

1
2
+

1 Re eiwln(ST / K )eC (T ,w)v+D(T ,w)v0

iw0
dw

=
1
2
+

1 Re eiwln(ST )e iwln( K )eC (T ,w)v+D(T ,w)v0

iw0
dw

=
1
2
+

1 Re e iwln( K )eC (T ,w)v+D(T ,w)v0+iwln(ST )

iw0
dw

 

(B.5)

And recalling that, at time t =T , the characteristic function of the Heston model 
that we used in (3.3) is precisely 
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ψln(ST )
Heston(w) = e[C (T ,w)v+D(T ,w)v0+iwln(ST )]

 
(B.6)

the expression for Π2
Ga  becomes 

   

Π2
Ga =

1
2
+
1
π

Re
e−iwln(K )ψlnST (w)

iw

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

∞

∫ dw
 

(B.7)

which is the definition of Π2  that we have used through the paper.

A similar approach can be used to show the equivalence of (2.6) to the expression for 
Π1
Ga  provided in Gatheral (2006).
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Appendix C: Risk Neutrality in the Heston model

In order to understand the use of risk neutrality we first state the main result and 
then we prove it.

Main result

We start with the Heston dynamics under the physical measure P

dSt = µStdt + Vt StdWt
P,1

dVt = a
P(V P −Vt )dt +η Vt dWt

P,2

dWt
P,1dWt

P,2 = ρdt

and we seek to obtain a risk-neutral evolution where Et
Q (dSt / St ) = rdt . As we 

show below, using the multidimensional Girsanov’s theorem and making appropri-
ate choices, the Heston dynamics under the risk-neutral measure Q can be expressed 
as 

dSt = rStdt + Vt StdWt
Q ,1

dVt = a
Q (V Q −Vt )dt +η Vt dWt

Q ,2

dWt
Q ,1dWt

Q ,2 = ρdt

where aQ = aP +γ , V Q = aPV
aP+γ

 and γ  is a parameter linked to the price of volatil-
ity risk. 

Therefore, the Heston dynamics under the risk-neutral measure exhibit a similar 
pattern to that of the physical measure, but with a variance process that is defined 
by the parameters aQ  and V Q  instead of aP  and V P . A remarkable feature is that 
aQ  and V Q  already incorporate the impact of the volatility risk premium γ . Con-
sequently, when calibrating the risk-neutral model to market prices, we can directly 
solve for aQ  and V Q , and we will not need to estimate γ  explicitly. 

In section 3, for simplicity, we omitted the Q superscripts. However, it should be 
noted that the values for a  and V  that we used through the paper are the risk-
neutral ones (i.e. aQ  and V Q ), and not those under the physical measure. The use 
of risk-neutral dynamics is justified when all the risks related to holding options can 
be hedged away. Within the Heston model, there are two sources of uncertainty: the 
underlying asset movements and the volatility movements. The first risk source can 
be hedged away implementing a delta-hedging strategy in similar terms to those of 
the BSM framework. 
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However, in order to hedge the volatility risk, a liquid market for volatility related 
contracts is needed. Consequently, the use of risk-neutral pricing is conditioned by 
the assumption of perfect hedging. If hedging is not possible, we might need to go 
back to the dynamics under the physical measure, which requires different models 
and hypothesis in order to estimate the appropiate risk premiums and the corre-
sponding real-world distribution. 

Proof 

We start again with the Heston dynamics under the physical measure

   

dSt = µStdt + Vt StdWt
P,1

dVt = a
P(V P −Vt )dt +η Vt dWt

P,2

dWt
P,1dWt

P,2 = ρdt
 (C.1)

where the discounted underlying price is a martingale under P.

To obtain the risk-neutral dynamics we should find an equivalent martingale meas-
ure (EMM) where the process dSt / St  has a drift of rdt . To achieve this we per-
form a change of probability measure using Girsanov’s theorem. In particular, we 
define a new EMM through the Radon-Nikodym derivative: 

dQ
dP t

= Mt

where Mt  is an exponential martingale of the form

Mt = exp Cst

T
∫ dWs

P,1 −
1
2

Cs
2 ds

t

T
∫ + Dst

T
∫ dWs

P,2 −
1
2

Ds
2 ds

t

T
∫

⎧
⎨
⎩

⎫
⎬
⎭

and it is the solution of the SDE

dMt

Mt

=CtdW
P,1+DtdW

P,2

with initial value M0 =1. 

Since we are working with EMMs, the expectation of a given stochastic process Z 
under the new measure Q can be computed as

Et
Q (Z ) = Et

P(MtZ )

Therefore, if we consider the expectation of infinitesimal increments

Et
Q (dZ ) = Et

P Mt + dMt
Mt

dZ
⎛

⎝
⎜

⎞

⎠
⎟= Et

P 1+ dMt
Mt

⎛

⎝
⎜

⎞

⎠
⎟dZ

⎡

⎣
⎢

⎤

⎦
⎥= Et

PdZ + Et
P(CtdW

P,1+DtdW
P,2 )dZ
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Using the equation above, we can compute the drift and volatility for the process 
dSt / St  under Q 

Et
Q dSt

St

= Et
P dSt

St

+ Et
P (CtdW P,1+ DtdW P,2 )

dSt

St

= Et
P(μdt + Vt dWt

P,1)+ Et
P (CtdW P,1+ DtdW P,2 )(μdt + Vt dWt

P,1)( )
= Et

P(μdt)+ Et
P( Vt dWt

P,1)+ Et
P(CtμdW

P ,1

dt)+ Et
P(Ct Vt (dWt

P,1)2 )+

+ Et
P(DtμdW P,2dt)+ Et

P(Dt Vt dW P,2dWt
P,1)

= μdt +0+0+Ct Vt dt +0+ Dt Vt dt

= (μ +Ct Vt + Dt Vt )dt

Et
Q dSt
St

⎛

⎝
⎜

⎞

⎠
⎟

2

= Et
P 1+CtdW

P,1+DtdW
P,2( ) µdt + Vt dWt

P,1( )⎡
⎣⎢

⎤
⎦⎥
2

= Et
P Vt (dWt

P,1)2⎡
⎣

⎤
⎦

=Vtdt

where we expanded the initial expressions and we used the fact that Weiner pro-
cesses are distributed as N (0, t )  and, consequently, E(dWt

P,1dWt
P,2 ) = ρdt . 

We also used the basic rules of stochastic calculus 
E(dWt ) = 0 ; E(dWtdt) = 0 ; E(dt

2 ) = 0  and E (dWt )
2⎡

⎣
⎤
⎦= dt .

Similarly, the drift and volatility for dVt  can be computed as

Et
Q dVt( ) = Et

P dVt( )+ Et
P (CtdW P,1+ DtdW P,2 )dVt( )

= Et
P(aP(V P Vt )dt)+ Et

P (CtdW P,1+ DtdW P,2 ) aP(V P Vt )dt + Vt dWt
P,2( )

= aP(V P Vt )dt + Et
P Ct Vt dW P,1dW P,2 + Et

P Dt Vt (dW P,2 )2

= aP(V P Vt )+ Ct Vt + Dt Vt dt

Et
Q dVt( )2 = EtP 1+CtdW

P,1+DtdW
P,2( ) aP(V P −Vt )dt +η Vt dWt

P,2( )⎡
⎣⎢

⎤
⎦⎥
2

= Et
P η2Vt (dWt

P,2 )2⎡
⎣

⎤
⎦

=η2Vtdt

Now, in order select the desired EMM, we impose the restriction 

Et
Q dSt
St

⎛

⎝
⎜

⎞

⎠
⎟= rdt

which gives us the equation (µ +Ct Vt +Dt Vtρ)dt = rdt . Rearranging terms 
we obtain the following relationship, which defines the market price of risk

Ct + ρDt = −
µ − r
Vt
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Additionally, we need to set the drift for the volatility process. In this case, an ap-
propriate choice is 

Et
Q dVt( ) = aP(V P −Vt )−γVt⎡

⎣
⎤
⎦dt

where γ  is a parameter related to the price of volatility risk. This constraint gives us 
the equation [aP(V P −Vt )+ ρCtη Vt +Dtη Vt ]dt = [a

P(V P −Vt )−γVt ]dt , 
which defines the price of volatility risk

ρCt +Dt = −
γ Vt
η

Considering the properties of EMMs, the multidimensional Girsanov´s theorem tells 
us that the Weiner processes under the new measure Q are 

Wt
Q ,1 =Wt

P,1+
µ − r
Vt
t

Wt
Q ,2 =Wt

P,2 +
γ Vt
η
t

Therefore, rearranging terms and substituting on the initial dynamics we get 

dSt = μStdt + Vt StdWt
P,1

= μStdt + Vt Std Wt
Q ,1 μ r

Vt

t

= μStdt + Vt StdWt
Q ,1 Vt St

μ r
Vt

dt

= rStdt + Vt StdWt
Q ,1

dVt = aP(V P Vt )dt + Vt dWt
P,2

= aP(V P Vt )dt + Vt d Wt
Q ,2 Vt t

= aP(V P Vt )dt + Vt dWt
Q ,2 Vt

Vt dt

= aPV P aPVt Vt( )dt + Vt dWt
Q ,2

and if we introduce the notation aQ = aP +γ  and V Q = aPV
aP+γ

, the process dVt  be-
comes

dVt = a
Q (V Q −Vt )dt +η Vt dWt

Q ,2

Finally, the correlation condition dWt
P,1dWt

P,2 = ρdt  is equivalent to require 
E(dWt

P,1dWt
P,2 ) = ρdt . And considering the relationship between the Weiner 

processes under the physical and the risk-neutral measure we get
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dt= E(dWt
P,1dWt

P,2 )

= E d Wt
Q ,1 +

μ r
Vt

t d Wt
Q ,2 +

Vt t

= E dWt
Q ,1dWt

Q ,2( )

where we have used again the stochastic calculus rules E(dWt ) = 0 ; E(dWtdt) = 0
and E(dt2 ) = 0 .
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Appendix D: Datasets used for Calibration

Dataset D1: 15 options (3 maturities, 5 strikes)

Spot Maturity Strike Interest rate Mid Bid Ask

328.29 0.1753424 275 0.000553778 56.9 55.5 58.3

328.29 0.1753424 300 0.000553778 36.3 35.0 37.6

328.29 0.1753424 325 0.000553778 19.6 19.3 19.9

328.29 0.1753424 350 0.000553778 9.45 9.2 9.7

328.29 0.1753424 375 0.000553778 4.3 4.1 4.5

328.29 0.4246575 275 0.000659467 63.2 61.7 64.7

328.29 0.4246575 300 0.000659467 44.9 44.4 45.4

328.29 0.4246575 325 0.000659467 30.55 30.2 30.9

328.29 0.4246575 350 0.000659467 20.05 19.7 20.4

328.29 0.4246575 375 0.000659467 12.5 12.2 12.8

328.29 0.9232876 275 0.000850338 77.55 76.1 79.0

328.29 0.9232876 300 0.000850338 61.45 60.8 62.1

328.29 0.9232876 325 0.000850338 48.9 48.1 49.7

328.29 0.9232876 350 0.000850338 38.45 37.9 39.0

328.29 0.9232876 375 0.000850338 29.5 29.0 30.0

Call options written on Biogen Idec (Nasdaq: BIIB). Market data observed on Febru-
ary 14, 2014 

Dataset D2: 15 options (3 maturities, 5 strikes)

Spot Maturity Strike Interest rate Mid Bid Ask

1313.67 0.3972602 1200 0.000697973 160.15 158.6 161.7

1313.67 0.3972602 1250 0.000697973 127.25 125.6 128.9

1313.67 0.3972602 1300 0.000697973 99.15 98.0 100.3

1313.67 0.3972602 1350 0.000697973 75.25 73.8 76.7

1313.67 0.3972602 1400 0.000697973 55.6 54.4 56.8

1313.67 0.8958904 1200 0.000853821 211.1 209.4 212.8

1313.67 0.8958904 1250 0.000853821 182.25 180.6 183.9

1313.67 0.8958904 1300 0.000853821 156.35 155.0 157.7

1313.67 0.8958904 1350 0.000853821 132.2 130.3 134.1

1313.67 0.8958904 1400 0.000853821 111.55 110.2 112.9

1313.67 1.8904109 1200 0.002228013 286 284.2 287.8

1313.67 1.8904109 1250 0.002228013 259.75 257.8 261.7

1313.67 1.8904109 1300 0.002228013 235.3 233.2 237.4

1313.67 1.8904109 1350 0.002228013 213.05 211.2 214.9

1313.67 1.8904109 1400 0.002228013 192.2 190.4 194.0
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Call options written on The Priceline Group (Nasdaq: PCLN). Market data observed 
on February 24, 2014 

Dataset D3: 30 options (6 maturities, 5 strikes)

Spot Maturity Strike Interest rate Mid Bid Ask

39.63 0.0493150 36 0.000631752 3.75 3.7 3.8

39.63 0.0493150 38 0.000631752 2.145 2.13 2.16

39.63 0.0493150 40 0.000631752 1.035 1.02 1.05

39.63 0.0493150 42 0.000631752 0.435 0.42 0.45

39.63 0.0493150 44 0.000631752 0.17 0.16 0.18

39.63 0.1260273 36 0.000707312 4.3 4.25 4.35

39.63 0.1260273 38 0.000707312 2.91 2.89 2.93

39.63 0.1260273 40 0.000707312 1.85 1.84 1.86

39.63 0.1260273 42 0.000707312 1.095 1.08 1.11

39.63 0.1260273 44 0.000707312 0.615 0.61 0.62

39.63 0.3753424 36 0.000734416 5.55 5.5 5.6

39.63 0.3753424 38 0.000734416 4.35 4.3 4.4

39.63 0.3753424 40 0.000734416 3.35 3.3 3.4

39.63 0.3753424 42 0.000734416 2.55 2.53 2.57

39.63 0.3753424 44 0.000734416 1.92 1.9 1.94

39.63 0.6246575 36 0.000796417 6.475 6.4 6.55

39.63 0.6246575 38 0.000796417 5.35 5.3 5.4

39.63 0.6246575 40 0.000796417 4.4 4.35 4.45

39.63 0.6246575 42 0.000796417 3.6 3.55 3.65

39.63 0.6246575 44 0.000796417 2.92 2.89 2.95

39.63 0.8739726 35 0.000882340 7.775 7.7 7.85

39.63 0.8739726 37 0.000882340 6.675 6.6 6.75

39.63 0.8739726 40 0.000882340 5.25 5.2 5.3

39.63 0.8739726 42 0.000882340 4.425 4.35 4.5

39.63 0.8739726 45 0.000882340 3.425 3.35 3.5

39.63 1.8684931 35 0.002280481 10.125 9.95 10.3

39.63 1.8684931 37 0.002280481 9.2 9.05 9.35

39.63 1.8684931 40 0.002280481 7.85 7.75 7.95

39.63 1.8684931 42 0.002280481 7.1 7.0 7.2

39.63 1.8684931 45 0.002280481 6.1 5.95 6.25

Call options written on Yahoo (Nasdaq: YHOO). Market data observed on March 4, 
2014. 
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